論文の概要: Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization
- arxiv url: http://arxiv.org/abs/2409.09684v1
- Date: Sun, 15 Sep 2024 10:37:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 19:38:21.018823
- Title: Anatomy of Machines for Markowitz: Decision-Focused Learning for Mean-Variance Portfolio Optimization
- Title(参考訳): Markowitz の機械解剖:平均変動ポートフォリオ最適化のための意思決定型学習
- Authors: Junhyeong Lee, Inwoo Tae, Yongjae Lee,
- Abstract要約: 意思決定学習は、予測と最適化を統合して意思決定結果を改善する。
MSEは全ての資産のエラーを等しく扱うが、DFLはどのように異なる資産のエラーを減らせるのか?
本研究は,MVOにおける意思決定を最適化するために,DFLがストックリターン予測モデルをどのように調整するかを検討することを目的とする。
- 参考スコア(独自算出の注目度): 27.791742749950203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Markowitz laid the foundation of portfolio theory through the mean-variance optimization (MVO) framework. However, the effectiveness of MVO is contingent on the precise estimation of expected returns, variances, and covariances of asset returns, which are typically uncertain. Machine learning models are becoming useful in estimating uncertain parameters, and such models are trained to minimize prediction errors, such as mean squared errors (MSE), which treat prediction errors uniformly across assets. Recent studies have pointed out that this approach would lead to suboptimal decisions and proposed Decision-Focused Learning (DFL) as a solution, integrating prediction and optimization to improve decision-making outcomes. While studies have shown DFL's potential to enhance portfolio performance, the detailed mechanisms of how DFL modifies prediction models for MVO remain unexplored. This study aims to investigate how DFL adjusts stock return prediction models to optimize decisions in MVO, addressing the question: "MSE treats the errors of all assets equally, but how does DFL reduce errors of different assets differently?" Answering this will provide crucial insights into optimal stock return prediction for constructing efficient portfolios.
- Abstract(参考訳): マークウィッツは平均分散最適化(MVO)フレームワークを通じてポートフォリオ理論の基礎を築いた。
しかし、MVOの有効性は、期待されるリターン、分散、および通常不確実なアセットリターンの共分散の正確な推定に一致している。
機械学習モデルは、不確実なパラメータを推定するのに有用であり、そのようなモデルは、平均二乗誤差(MSE)のような、資産全体にわたって予測エラーを均一に扱う予測誤差を最小限に抑えるために訓練されている。
近年の研究では、このアプローチが最適下決定につながることが指摘されており、意思決定結果を改善するための予測と最適化を統合したDFL(Decision-Focused Learning)がソリューションとして提案されている。
ポートフォリオ性能を向上させるDFLの可能性は研究されているが、DFLがMVOの予測モデルをどう修正するかの詳細なメカニズムは未解明のままである。
本研究は、DFLがMVOの意思決定を最適化するためにストックリターン予測モデルをどのように調整するかを検討することを目的としており、「MSEは全ての資産のエラーを等しく扱うが、DFLは異なる資産のエラーを異なる方法で減らすのか?」という疑問に対処している。
これに対する回答は、効率的なポートフォリオを構築するための最適な株価リターン予測に関する重要な洞察を提供するだろう。
関連論文リスト
- Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
反復的選好最適化は、最近、大規模言語モデル(LLM)のデファクトトレーニングパラダイムの1つになっている。
我々は、信頼性の高いフィードバックでLLMを自己進化させる不確実性のあるtextbfPreference textbfOptimizationフレームワークを提案する。
筆者らのフレームワークは,ノイズ問題を大幅に軽減し,反復的選好最適化の性能を向上させる。
論文 参考訳(メタデータ) (2024-09-17T14:05:58Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - On the Robustness of Decision-Focused Learning [0.0]
決定焦点学習(Decision-Focused Learning, DFL)は、機械学習(ML)モデルを訓練し、不完全な最適化問題の欠落パラメータを予測するための新興学習パラダイムである。
DFLは、予測と最適化タスクを統合することで、エンドツーエンドシステムでMLモデルをトレーニングし、トレーニングとテストの目的の整合性を向上させる。
論文 参考訳(メタデータ) (2023-11-28T04:34:04Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Optimizing Stock Option Forecasting with the Assembly of Machine
Learning Models and Improved Trading Strategies [9.553857741758742]
本稿では、機械学習(ML)モデルの適用、取引戦略の改善、ストックオプション予測と取引結果の最適化のための準可逆法(QRM)について紹介する。
論文 参考訳(メタデータ) (2022-11-29T04:01:16Z) - The Sharpe predictor for fairness in machine learning [0.0]
機械学習の応用においては、不公平な予測が少数派に対して差別されることがある。
フェア機械学習(FML)の既存のアプローチは、MLモデルの最適化において、フェアネスを制約またはペナル化用語として扱う。
本稿では,Multi-Objective Optimization(SMOO)に基づくFMLの新しいパラダイムを提案する。
FMLのシャープ予測器は、予測リスク(不公平)の単位当たりの最も高い予測リターン(精度)を提供する。
論文 参考訳(メタデータ) (2021-08-13T22:22:34Z) - When Does Uncertainty Matter?: Understanding the Impact of Predictive
Uncertainty in ML Assisted Decision Making [68.19284302320146]
我々は,異なるレベルの専門知識を持つ人々が,異なるタイプの予測不確実性にどう反応するかを評価するために,ユーザスタディを実施している。
その結果,後続の予測分布を示すことは,MLモデルの予測との相違点が小さくなることがわかった。
このことは、後続の予測分布は、人間の分布の種類や専門性を考慮し、注意を払って使用するべき有用な決定支援として役立つ可能性があることを示唆している。
論文 参考訳(メタデータ) (2020-11-12T02:23:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。