AlpaPICO: Extraction of PICO Frames from Clinical Trial Documents Using LLMs
- URL: http://arxiv.org/abs/2409.09704v1
- Date: Sun, 15 Sep 2024 11:53:24 GMT
- Title: AlpaPICO: Extraction of PICO Frames from Clinical Trial Documents Using LLMs
- Authors: Madhusudan Ghosh, Shrimon Mukherjee, Asmit Ganguly, Partha Basuchowdhuri, Sudip Kumar Naskar, Debasis Ganguly,
- Abstract summary: In recent years, there has been a surge in the publication of clinical trial reports, making it challenging to conduct systematic reviews.
Automatically extracting Population, Intervention, Comparator, and Outcome (PICO) from clinical trial studies can alleviate the traditionally time-consuming process of manually scrutinizing systematic reviews.
In this work, we adopt ICL strategy by employing the pretrained knowledge of Large Language Models (LLMs), gathered during the pretraining phase of an LLM, to automatically extract the PICO-related terminologies from clinical trial documents.
- Score: 8.100885311316118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, there has been a surge in the publication of clinical trial reports, making it challenging to conduct systematic reviews. Automatically extracting Population, Intervention, Comparator, and Outcome (PICO) from clinical trial studies can alleviate the traditionally time-consuming process of manually scrutinizing systematic reviews. Existing approaches of PICO frame extraction involves supervised approach that relies on the existence of manually annotated data points in the form of BIO label tagging. Recent approaches, such as In-Context Learning (ICL), which has been shown to be effective for a number of downstream NLP tasks, require the use of labeled examples. In this work, we adopt ICL strategy by employing the pretrained knowledge of Large Language Models (LLMs), gathered during the pretraining phase of an LLM, to automatically extract the PICO-related terminologies from clinical trial documents in unsupervised set up to bypass the availability of large number of annotated data instances. Additionally, to showcase the highest effectiveness of LLM in oracle scenario where large number of annotated samples are available, we adopt the instruction tuning strategy by employing Low Rank Adaptation (LORA) to conduct the training of gigantic model in low resource environment for the PICO frame extraction task. Our empirical results show that our proposed ICL-based framework produces comparable results on all the version of EBM-NLP datasets and the proposed instruction tuned version of our framework produces state-of-the-art results on all the different EBM-NLP datasets. Our project is available at \url{https://github.com/shrimonmuke0202/AlpaPICO.git}.
Related papers
- Classifying Cancer Stage with Open-Source Clinical Large Language Models [0.35998666903987897]
Open-source clinical large language models (LLMs) can extract pathologic tumor-node-metastasis (pTNM) staging information from real-world pathology reports.
Our findings suggest that while LLMs still exhibit subpar performance in Tumor (T) classification, with the appropriate adoption of prompting strategies, they can achieve comparable performance on Metastasis (M) and improved performance on Node (N) classification.
arXiv Detail & Related papers (2024-04-02T02:30:47Z) - LESEN: Label-Efficient deep learning for Multi-parametric MRI-based
Visual Pathway Segmentation [5.726588626363204]
We propose a label-efficient deep learning method with self-ensembling (LESEN)
LESEN incorporates supervised and unsupervised losses, enabling the student and teacher models to mutually learn from each other.
Our experiments on the human connectome project (HCP) dataset demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-01-03T10:22:13Z) - Take One Step at a Time to Know Incremental Utility of Demonstration: An Analysis on Reranking for Few-Shot In-Context Learning [23.932500424117244]
In-Context Learning (ICL) is an emergent capability of Large Language Models (LLMs)
Previous studies have shown that using LLMs' outputs as labels is effective in training models to select demonstrations.
This paper presents an analysis on different utility functions by focusing on LLMs' output probability given ground-truth output.
arXiv Detail & Related papers (2023-11-16T07:03:54Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
Large language models (LLMs) have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning.
We propose a simple but effective in-context learning framework called ICL-D3IE.
Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations.
arXiv Detail & Related papers (2023-03-09T06:24:50Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - Pareto Optimization for Active Learning under Out-of-Distribution Data
Scenarios [79.02009938011447]
We propose a sampling scheme, which selects optimal subsets of unlabeled samples with fixed batch size from the unlabeled data pool.
Experimental results show its effectiveness on both classical Machine Learning (ML) and Deep Learning (DL) tasks.
arXiv Detail & Related papers (2022-07-04T04:11:44Z) - HealthPrompt: A Zero-shot Learning Paradigm for Clinical Natural
Language Processing [3.762895631262445]
We developed a novel prompt-based clinical NLP framework called HealthPrompt.
We performed an in-depth analysis of HealthPrompt on six different PLMs in a no-data setting.
Our experiments prove that prompts effectively capture the context of clinical texts and perform remarkably well without any training data.
arXiv Detail & Related papers (2022-03-09T21:44:28Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
We propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning.
Our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-08-12T09:14:44Z) - Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning [54.85397562961903]
Semi-supervised learning (SSL) has been proposed to leverage unlabeled data for training powerful models when only limited labeled data is available.
We address a more complex novel scenario named open-set SSL, where out-of-distribution (OOD) samples are contained in unlabeled data.
Our method achieves state-of-the-art results by successfully eliminating the effect of OOD samples.
arXiv Detail & Related papers (2020-07-22T10:33:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.