論文の概要: Precise Pick-and-Place using Score-Based Diffusion Networks
- arxiv url: http://arxiv.org/abs/2409.09725v1
- Date: Sun, 15 Sep 2024 13:09:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 17:40:52.712238
- Title: Precise Pick-and-Place using Score-Based Diffusion Networks
- Title(参考訳): スコアベース拡散ネットワークを用いた精密ピック・アンド・プレイス
- Authors: Shih-Wei Guo, Tsu-Ching Hsiao, Yu-Lun Liu, Chun-Yi Lee,
- Abstract要約: ロボット操作タスクにおけるピック・アンド・プレイス操作の精度を高めるために、粗い連続ポーズ拡散法。
提案手法は,RGB-Dカメラから投影されるトップダウンのRGB画像を利用し,粗いアーキテクチャを採用する。
- 参考スコア(独自算出の注目度): 10.760482305679053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel coarse-to-fine continuous pose diffusion method to enhance the precision of pick-and-place operations within robotic manipulation tasks. Leveraging the capabilities of diffusion networks, we facilitate the accurate perception of object poses. This accurate perception enhances both pick-and-place success rates and overall manipulation precision. Our methodology utilizes a top-down RGB image projected from an RGB-D camera and adopts a coarse-to-fine architecture. This architecture enables efficient learning of coarse and fine models. A distinguishing feature of our approach is its focus on continuous pose estimation, which enables more precise object manipulation, particularly concerning rotational angles. In addition, we employ pose and color augmentation techniques to enable effective training with limited data. Through extensive experiments in simulated and real-world scenarios, as well as an ablation study, we comprehensively evaluate our proposed methodology. Taken together, the findings validate its effectiveness in achieving high-precision pick-and-place tasks.
- Abstract(参考訳): 本稿では,ロボット操作作業におけるピック・アンド・プレイス操作の精度を高めるために,新しい粗い連続ポーズ拡散法を提案する。
拡散ネットワークの能力を活用して、オブジェクトのポーズの正確な認識を容易にする。
この正確な認識は、ピック・アンド・プレイスの成功率と全体的な操作精度の両方を高める。
提案手法は,RGB-Dカメラから投影されるトップダウンのRGB画像を利用し,粗いアーキテクチャを採用する。
このアーキテクチャは粗いモデルと細かなモデルの効率的な学習を可能にする。
このアプローチの際立った特徴は、特に回転角に関するより正確なオブジェクト操作を可能にする連続ポーズ推定に焦点をあてることである。
さらに、限られたデータによる効果的なトレーニングを可能にするために、ポーズとカラー増強技術を採用している。
シミュレーションおよび実世界のシナリオにおける広範な実験、およびアブレーション研究を通じて、提案手法を網羅的に評価した。
その結果, 高精度なピック・アンド・プレイス・タスクの実現の有効性が検証された。
関連論文リスト
- Zero-Shot Object-Centric Representation Learning [72.43369950684057]
ゼロショット一般化のレンズによる現在の対象中心法について検討する。
8つの異なる合成および実世界のデータセットからなるベンチマークを導入する。
多様な実世界の画像のトレーニングにより、見えないシナリオへの転送性が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-17T10:37:07Z) - Explainable Light-Weight Deep Learning Pipeline for Improved Drought Stress Identification [0.0]
作物の干ばつストレスの早期同定は、効果的な緩和対策と収量損失の低減に不可欠である。
本研究は,UAVが自然環境下で捕獲したジャガイモの干ばつストレスを分類するための,新しいディープラーニングフレームワークを提案する。
私たちの研究の重要な革新は、説明可能性のテクニックであるグラディエントクラスの活性化マッピング(Grad-CAM)の統合です。
論文 参考訳(メタデータ) (2024-04-15T18:26:03Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
ポースグラフ最適化手法を拡張する新しい手法を提案する。
我々は、カメラを含む二部グラフ、オブジェクトの動的進化、各ステップにおけるカメラオブジェクト間の相対変換について考察する。
我々のフレームワークは従来のPGOソルバとの互換性を維持しているが、その有効性はカスタマイズされた最適化方式の恩恵を受けている。
論文 参考訳(メタデータ) (2024-03-25T17:47:03Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - TransPoser: Transformer as an Optimizer for Joint Object Shape and Pose
Estimation [25.395619346823715]
連続観察されたRGB-D画像から剛体物体の形状と姿勢の結合推定法を提案する。
本稿では、カメラの視点と視線方向が与えられた物体の深度画像を直接出力するニューラルネットワークであるDeep Directional Distance Function(DeepDDF)を紹介する。
結合推定自体をTransPoserと呼ぶTransformerとして定式化する。
論文 参考訳(メタデータ) (2023-03-23T17:46:54Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRMは、6Dポーズ改善のための新しいリカレントネットワークアーキテクチャである。
アーキテクチャにはLSTMユニットが組み込まれ、各改善ステップを通じて情報を伝達する。
DeepRMは、2つの広く受け入れられている課題データセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-28T16:18:08Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-11T23:31:34Z) - 6D Pose Estimation with Combined Deep Learning and 3D Vision Techniques
for a Fast and Accurate Object Grasping [0.19686770963118383]
リアルタイムロボットの把握は高度な自律システムにとって最優先の目標である。
本稿では,ディープニューラルネットワークを用いた高速な2次元物体認識を組み合わせた2段階手法を提案する。
提案手法は、効率と精度の両方を必要とせず、リアルタイムアプリケーションで堅牢に動作する可能性がある。
論文 参考訳(メタデータ) (2021-11-11T15:36:55Z) - IMU-Assisted Learning of Single-View Rolling Shutter Correction [16.242924916178282]
ローリングシャッター歪みは、写真やコンピュータビジョンアルゴリズムにとって非常に望ましくない。
回転シャッター補正のための1つの画像から深度と行ワイドポーズを予測するディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-11-05T21:33:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。