PersonaMark: Personalized LLM watermarking for model protection and user attribution
- URL: http://arxiv.org/abs/2409.09739v2
- Date: Tue, 17 Dec 2024 16:52:12 GMT
- Title: PersonaMark: Personalized LLM watermarking for model protection and user attribution
- Authors: Yuehan Zhang, Peizhuo Lv, Yinpeng Liu, Yongqiang Ma, Wei Lu, Xiaofeng Wang, Xiaozhong Liu, Jiawei Liu,
- Abstract summary: PersonaMark is a novel personalized text watermarking scheme designed to protect Large Language Models' copyrights and bolster accountability.
By employing a personalized hashing function, unique watermarks are embedded for each user, enabling high-quality text generation without compromising the model's performance.
We conduct extensive evaluations across four LLMs, analyzing various metrics such as perplexity, sentiment, alignment, and readability.
- Score: 20.2735173280022
- License:
- Abstract: The rapid advancement of customized Large Language Models (LLMs) offers considerable convenience. However, it also intensifies concerns regarding the protection of copyright/confidential information. With the extensive adoption of private LLMs, safeguarding model copyright and ensuring data privacy have become critical. Text watermarking has emerged as a viable solution for detecting AI-generated content and protecting models. However, existing methods fall short in providing individualized watermarks for each user, a critical feature for enhancing accountability and traceability. In this paper, we introduce PersonaMark, a novel personalized text watermarking scheme designed to protect LLMs' copyrights and bolster accountability. PersonaMark leverages sentence structure as a subtle carrier of watermark information and optimizes the generation process to maintain the natural output of the model. By employing a personalized hashing function, unique watermarks are embedded for each user, enabling high-quality text generation without compromising the model's performance. This approach is both time-efficient and scalable, capable of handling large numbers of users through a multi-user hashing mechanism. To the best of our knowledge, this is a pioneer study to explore personalized watermarking in LLMs. We conduct extensive evaluations across four LLMs, analyzing various metrics such as perplexity, sentiment, alignment, and readability. The results validate that PersonaMark preserves text quality, ensures unbiased watermark insertion, and offers robust watermark detection capabilities, all while maintaining the model's behavior with minimal disruption.
Related papers
- GaussMark: A Practical Approach for Structural Watermarking of Language Models [61.84270985214254]
GaussMark is a simple, efficient, and relatively robust scheme for watermarking large language models.
We show that GaussMark is reliable, efficient, and relatively robust to corruptions such as insertions, deletions, substitutions, and roundtrip translations.
arXiv Detail & Related papers (2025-01-17T22:30:08Z) - Watermarking Large Language Models and the Generated Content: Opportunities and Challenges [18.01886375229288]
generative large language models (LLMs) have raised concerns about intellectual property rights violations and the spread of machine-generated misinformation.
Watermarking serves as a promising approch to establish ownership, prevent unauthorized use, and trace the origins of LLM-generated content.
This paper summarizes and shares the challenges and opportunities we found when watermarking LLMs.
arXiv Detail & Related papers (2024-10-24T18:55:33Z) - Signal Watermark on Large Language Models [28.711745671275477]
We propose a watermarking method embedding a specific watermark into the text during its generation by Large Language Models (LLMs)
This technique not only ensures the watermark's invisibility to humans but also maintains the quality and grammatical integrity of model-generated text.
Our method has been empirically validated across multiple LLMs, consistently maintaining high detection accuracy.
arXiv Detail & Related papers (2024-10-09T04:49:03Z) - Double-I Watermark: Protecting Model Copyright for LLM Fine-tuning [45.09125828947013]
The proposed approach effectively injects specific watermarking information into the customized model during fine-tuning.
We evaluate the proposed "Double-I watermark" under various fine-tuning methods, demonstrating its harmlessness, robustness, uniqueness, imperceptibility, and validity through both quantitative and qualitative analyses.
arXiv Detail & Related papers (2024-02-22T04:55:14Z) - Adaptive Text Watermark for Large Language Models [8.100123266517299]
It is challenging to generate high-quality watermarked text while maintaining strong security, robustness, and the ability to detect watermarks without prior knowledge of the prompt or model.
This paper proposes an adaptive watermarking strategy to address this problem.
arXiv Detail & Related papers (2024-01-25T03:57:12Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
Token-level watermarking inserts watermarks in the generated texts by altering the token probability distributions.
This watermarking algorithm alters the logits during generation, which can lead to a downgraded text quality.
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)
arXiv Detail & Related papers (2023-11-16T08:36:00Z) - FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models [64.89896692649589]
We propose FT-Shield, a watermarking solution tailored for the fine-tuning of text-to-image diffusion models.
FT-Shield addresses copyright protection challenges by designing new watermark generation and detection strategies.
arXiv Detail & Related papers (2023-10-03T19:50:08Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
This study examines how significantly watermarks impact the quality of model-generated outputs.
It is possible to integrate watermarks without affecting the output probability distribution.
The presence of watermarks does not compromise the performance of the model in downstream tasks.
arXiv Detail & Related papers (2023-09-22T12:46:38Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
Large language models (LLMs) generate texts with increasing fluency and realism.
Existing watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs.
We propose Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information.
arXiv Detail & Related papers (2023-07-29T14:11:15Z) - Provable Robust Watermarking for AI-Generated Text [41.5510809722375]
We propose a robust and high-quality watermark method, Unigram-Watermark.
We prove that our watermark method enjoys guaranteed generation quality, correctness in watermark detection, and is robust against text editing and paraphrasing.
arXiv Detail & Related papers (2023-06-30T07:24:32Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
We study the robustness of watermarked text after it is re-written by humans, paraphrased by a non-watermarked LLM, or mixed into a longer hand-written document.
We find that watermarks remain detectable even after human and machine paraphrasing.
We also consider a range of new detection schemes that are sensitive to short spans of watermarked text embedded inside a large document.
arXiv Detail & Related papers (2023-06-07T17:58:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.