論文の概要: Reasoning Paths with Reference Objects Elicit Quantitative Spatial Reasoning in Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2409.09788v1
- Date: Sun, 15 Sep 2024 16:45:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 17:20:56.692161
- Title: Reasoning Paths with Reference Objects Elicit Quantitative Spatial Reasoning in Large Vision-Language Models
- Title(参考訳): 参照対象との共振経路による大規模視覚言語モデルにおける空間共振の定量化
- Authors: Yuan-Hong Liao, Rafid Mahmood, Sanja Fidler, David Acuna,
- Abstract要約: 定量的空間的推論のために設計された5つのカテゴリに271の質問があるベンチマークQ-Spatial Benchを導入する。
本課題における最先端の視覚言語モデル(VLM)の性能について検討する。
本研究では,参照オブジェクトを視覚的手がかりとして,VLMが量的空間的疑問に答えることを奨励するゼロショットプロンプト技術であるSpatialPromptを開発した。
- 参考スコア(独自算出の注目度): 61.899791071654654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advances demonstrating vision-language models' (VLMs) abilities to describe complex relationships in images using natural language, their capability to quantitatively reason about object sizes and distances remains underexplored. In this work, we introduce a manually annotated benchmark, Q-Spatial Bench, with 271 questions across five categories designed for quantitative spatial reasoning and systematically investigate the performance of state-of-the-art VLMs on this task. Our analysis reveals that reasoning about distances between objects is particularly challenging for SoTA VLMs; however, some VLMs significantly outperform others, with an over 40-point gap between the two best performing models. We also make the surprising observation that the success rate of the top-performing VLM increases by 19 points when a reasoning path using a reference object emerges naturally in the response. Inspired by this observation, we develop a zero-shot prompting technique, SpatialPrompt, that encourages VLMs to answer quantitative spatial questions using reference objects as visual cues. By instructing VLMs to use reference objects in their reasoning paths via SpatialPrompt, Gemini 1.5 Pro, Gemini 1.5 Flash, and GPT-4V improve their success rates by over 40, 20, and 30 points, respectively. We emphasize that these significant improvements are obtained without needing more data, model architectural modifications, or fine-tuning.
- Abstract(参考訳): 近年,自然言語を用いた画像の複雑な関係を記述できる視覚言語モデル(VLM)の能力の実証が進んでいるが,物体の大きさや距離を定量的に判断する能力はいまだ検討されていない。
そこで本研究では,空間的推論を定量的に行うために設計された5つのカテゴリにわたる271の質問を手動でアノテートしたベンチマークQ-Spatial Benchを導入し,このタスクにおける最先端のVLMの性能を体系的に検討する。
分析の結果,オブジェクト間の距離の推論は,SoTA VLMでは特に困難であることが判明した。
また,参照オブジェクトを用いた推論パスが応答中に自然に現れると,トップパフォーマンスのVLMの成功率が19ポイント増加するという驚くべき観察を行う。
この観察に触発されて、VLMが視覚的手がかりとして参照対象を用いて量的空間的疑問に答えることを奨励するゼロショットプロンプト技術であるSpatialPromptを開発した。
SpacePrompt、Gemini 1.5 Pro、Gemini 1.5 Flash、GPT-4Vを通じて、VLMに推論パスで参照オブジェクトを使用するように指示することで、それぞれの成功率が40、20、30ポイント以上向上する。
これらの重要な改善は、より多くのデータ、モデルアーキテクチャの変更、微調整を必要とせずに得られることを強調します。
関連論文リスト
- Beyond Visual Understanding: Introducing PARROT-360V for Vision Language Model Benchmarking [0.12369742273401668]
2487の難解な視覚パズルを特徴とする新しい総合ベンチマークであるPARROT-360Vベンチマークを紹介する。
GPT-4o, Claude-3.5-Sonnet, Gemini-1.5-Pro の先行モデルの評価を行った。
最新モデルのスコアはベンチマークで28~56パーセンテージで、一般的なベンチマークでのパフォーマンスよりも大幅に低かった。
論文 参考訳(メタデータ) (2024-11-20T01:09:21Z) - Polymath: A Challenging Multi-modal Mathematical Reasoning Benchmark [53.61633384281524]
PolyMATHはMLLMの認知的推論能力を評価するためのベンチマークである。
PolyMATHで最高のスコアは41%、36%、27%で、それぞれClaude-3.5 Sonnet、GPT-4o、Gemini-1.5 Proが獲得した。
さらにきめ細かい誤差解析により、これらのモデルは空間関係を理解し、引き出された高レベルの推論を行うのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-06T20:35:41Z) - Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities [30.176918208200604]
VLM(Vision-Language Models)は、様々な複雑なコンピュータビジョン問題に対処するための汎用ツールとして登場した。
これらのモデルは高い能力を持つが、いくつかの基本的な視覚的理解スキルが欠けていることが示されている。
本稿では,基本的な視覚課題におけるSoTA VLMの限界を理解することを目的とする。
論文 参考訳(メタデータ) (2024-08-13T08:26:32Z) - GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs [3.2688425993442696]
画像中の物体間の空間的関係を理解する能力は、視覚的推論の重要な構成要素である。
我々は、以前リリースされたWhat'sUpデータセットを拡張し、空間関係理解のための新しい包括的評価を提案する。
論文 参考訳(メタデータ) (2024-06-19T06:15:26Z) - TopViewRS: Vision-Language Models as Top-View Spatial Reasoners [38.406430696146714]
トップビューの視点は、人間が様々な種類の地図を読み、推論する典型的な方法である。
11,384の質問からなるTopViewRSデータセットを視覚入力として,現実的あるいは意味的なトップビューマップで紹介する。
次に、異なるレベルの複雑さを持つ4つの知覚と推論タスクにわたるVLMの研究と評価に使用します。
論文 参考訳(メタデータ) (2024-06-04T17:55:43Z) - Learning to Localize Objects Improves Spatial Reasoning in Visual-LLMs [38.02017186215372]
大きな言語モデル(LLM)を視覚領域タスクに統合し、視覚的なLLM(V-LLM)を実現することにより、視覚言語タスクにおける例外的なパフォーマンスを実現している。
しかし、既存のV-LLMは空間的推論と局所化認識が弱い。
画像空間座標に基づく微調整目標が空間認識をV-LLMに注入する方法について検討する。
論文 参考訳(メタデータ) (2024-04-11T03:09:34Z) - Finer: Investigating and Enhancing Fine-Grained Visual Concept Recognition in Large Vision Language Models [57.95366341738857]
詳細な分析では、命令調整されたLVLMはモダリティギャップを示し、同じ概念に対応するテキスト入力と視覚入力の相違を示す。
我々は,LVLMの細粒度視覚理解能力を評価するために,複数の属性中心評価ベンチマークであるFinerを提案し,説明可能性を大幅に改善した。
論文 参考訳(メタデータ) (2024-02-26T05:43:51Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
視覚条件付き言語モデル(VLM)は、視覚対話、シーン理解、ロボットタスク計画などのアプリケーションに採用されている。
新しいリリースの量は多いが、イメージ前処理、アーキテクチャ、最適化に関する重要な設計決定は未調査である。
論文 参考訳(メタデータ) (2024-02-12T18:21:14Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
視覚言語モデル(VLM)は近年,人間のような出力を生成できる視覚アシスタントとして,強力な有効性を示している。
我々は、既存の最先端のVLMを評価し、最高の性能モデルでさえ、強力な視覚的推論能力と一貫性を示すことができないことを発見した。
本稿では,VLMの推論性能と一貫性の向上を目的とした2段階トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T17:49:44Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
ViMON, OP3, TBA, SCALORの4つのオブジェクト中心アプローチの知覚能力を比較した。
この結果から,制約のない潜在表現を持つアーキテクチャは,オブジェクト検出やセグメンテーション,トラッキングといった観点から,より強力な表現を学習できる可能性が示唆された。
我々のベンチマークは、より堅牢なオブジェクト中心のビデオ表現を学習するための実りあるガイダンスを提供するかもしれない。
論文 参考訳(メタデータ) (2020-06-12T09:37:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。