Universal Topology Refinement for Medical Image Segmentation with Polynomial Feature Synthesis
- URL: http://arxiv.org/abs/2409.09796v1
- Date: Sun, 15 Sep 2024 17:07:58 GMT
- Title: Universal Topology Refinement for Medical Image Segmentation with Polynomial Feature Synthesis
- Authors: Liu Li, Hanchun Wang, Matthew Baugh, Qiang Ma, Weitong Zhang, Cheng Ouyang, Daniel Rueckert, Bernhard Kainz,
- Abstract summary: Medical image segmentation methods often neglect topological correctness, making their segmentations unusable for many downstream tasks.
One option is to retrain such models whilst including a topology-driven loss component.
We present a plug-and-play topology refinement method that is compatible with any domain-specific segmentation pipeline.
- Score: 19.2371330932614
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although existing medical image segmentation methods provide impressive pixel-wise accuracy, they often neglect topological correctness, making their segmentations unusable for many downstream tasks. One option is to retrain such models whilst including a topology-driven loss component. However, this is computationally expensive and often impractical. A better solution would be to have a versatile plug-and-play topology refinement method that is compatible with any domain-specific segmentation pipeline. Directly training a post-processing model to mitigate topological errors often fails as such models tend to be biased towards the topological errors of a target segmentation network. The diversity of these errors is confined to the information provided by a labelled training set, which is especially problematic for small datasets. Our method solves this problem by training a model-agnostic topology refinement network with synthetic segmentations that cover a wide variety of topological errors. Inspired by the Stone-Weierstrass theorem, we synthesize topology-perturbation masks with randomly sampled coefficients of orthogonal polynomial bases, which ensures a complete and unbiased representation. Practically, we verified the efficiency and effectiveness of our methods as being compatible with multiple families of polynomial bases, and show evidence that our universal plug-and-play topology refinement network outperforms both existing topology-driven learning-based and post-processing methods. We also show that combining our method with learning-based models provides an effortless add-on, which can further improve the performance of existing approaches.
Related papers
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Topologically Faithful Multi-class Segmentation in Medical Images [43.6770098513581]
We propose a general loss function for topologically faithful multi-class segmentation.
We project the N-class segmentation problem to N single-class segmentation tasks.
Our loss formulation significantly enhances topological correctness in cardiac, cell, artery-vein, and Circle of Willis segmentation.
arXiv Detail & Related papers (2024-03-16T19:11:57Z) - DTU-Net: Learning Topological Similarity for Curvilinear Structure
Segmentation [2.9398911304923447]
We present DTU-Net, a dual-decoder and topology-aware deep neural network consisting of two sequential light-weight U-Nets.
The texture net makes a coarse prediction using image texture information.
The topology net learns topological information from the coarse prediction by employing a triplet loss trained to recognize false and missed splits.
arXiv Detail & Related papers (2022-05-23T08:15:26Z) - Topology-Preserving Segmentation Network: A Deep Learning Segmentation
Framework for Connected Component [7.95119530218428]
In medical imaging, the topology of the structure, such as the kidney or lung, is usually known.
A it topology-preserving segmentation network (TPSN) is trained to give an accurate segmentation result.
TPSN is a deformation-based model that yields a deformation map through a UNet.
A multi-scale TPSN is developed in this paper that incorporates multi-level information of images to produce more precise segmentation results.
arXiv Detail & Related papers (2022-02-27T09:56:33Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Self-Learning with Rectification Strategy for Human Parsing [73.06197841003048]
We propose a trainable graph reasoning method to correct two typical errors in the pseudo-labels.
The reconstructed features have a stronger ability to represent the topology structure of the human body.
Our method outperforms other state-of-the-art methods in supervised human parsing tasks.
arXiv Detail & Related papers (2020-04-17T03:51:30Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.