Measurement resolution enhanced coherence for lattice fermions
- URL: http://arxiv.org/abs/2409.09878v2
- Date: Tue, 17 Sep 2024 11:57:07 GMT
- Title: Measurement resolution enhanced coherence for lattice fermions
- Authors: H. M. Hurst, Yik Haw Teoh, I. B. Spielman,
- Abstract summary: We study a minimal many-particle model consisting of weakly measured non-interacting fermions in a one dimensional lattice.
We calculate the properties of these BFSs for systems up to 32 sites and find that even for moderate reductions in measurement resolution they yield non-trivial steady state entanglement and coherence.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weak measurement enables the extraction of targeted information from a quantum system while minimizing decoherence due to measurement backaction. However, in many-body quantum systems backaction can have unexpected effects on wavefunction collapse. We theoretically study a minimal many-particle model consisting of weakly measured non-interacting fermions in a one dimensional lattice. Repeated measurement of on-site occupation number with single-site resolution stochastically drives the system toward a Fock state, regardless of the initial state. This need not be the case for measurements that do not, even in principle, have single-site spatial resolution. We numerically show for systems with up to 16 sites that decreasing the spatial resolution strongly affects both the rate of stochastic evolution for each quantum trajectory and the allowed final states. The full Hilbert space can be partitioned into backaction-free subspaces (BFSs) the elements of which are indistinguishable to these measurements. Repeated measurements will drive any initial state into a single BFS, leading to a steady state that is a fixed point of the measurement process. We exactly calculate the properties of these BFSs for systems up to 32 sites and find that even for moderate reductions in measurement resolution they yield non-trivial steady state entanglement and coherence.
Related papers
- Confinement to deterministic manifolds and low-dimensional solution formulas for continuously measured quantum systems [0.0]
Note draws attention to the observation that, in several settings of interest for quantum engineering, this diffusion in fact takes place in low dimension.
Namely, the state remains confined in a low-dimensional nonlinear manifold, often time-dependent, but independent of the measurement results.
arXiv Detail & Related papers (2025-03-11T11:08:03Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Towards a measurement theory in QFT: "Impossible" quantum measurements
are possible but not ideal [0.0]
We show that the same problem arises in non-relativistic quantum physics, where joint nonlocal measurements lead to signaling.
We develop a non-relativistic quantum information approach developed independently of the impossible measurements in QFT.
These considerations could help guide the development of a complete theory of measurement in QFT.
arXiv Detail & Related papers (2023-11-22T19:00:16Z) - Dilute measurement-induced cooling into many-body ground states [0.5492530316344587]
Cooling a quantum system to its ground state is important for the characterization of non-trivial interacting systems.
We identify conditions under which measurement-based cooling protocols can be taken to the dilute limit.
For two examples of frustration-free one-dimensional spin chains, we show that steering on a single link is sufficient to cool these systems into their unique ground states.
arXiv Detail & Related papers (2023-11-09T10:33:05Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Nonlocality and entanglement in measured critical quantum Ising chains [0.0]
Local degrees of freedom in critical states exhibit long-range entanglement.
We study the effects of measurements, performed with a finite density in space, on the ground state of the one-dimensional transverse-field Ising model at criticality.
arXiv Detail & Related papers (2023-01-19T19:03:37Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Entanglement detection in quantum many-body systems using entropic
uncertainty relations [0.0]
We study experimentally accessible lower bounds on entanglement measures based on entropic uncertainty relations.
We derive an improved entanglement bound for bipartite systems, which requires measuring joint probability distributions in only two different measurement settings per subsystem.
arXiv Detail & Related papers (2021-01-21T20:50:11Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.