Probing the Physical Reality of Projective Measurements
- URL: http://arxiv.org/abs/2506.20618v1
- Date: Wed, 25 Jun 2025 17:04:55 GMT
- Title: Probing the Physical Reality of Projective Measurements
- Authors: Leonard Werner Pingen, Mattia Moroder, Sebastian Paeckel,
- Abstract summary: We test whether the postulate of a measurement acting as an instantaneous projection onto an eigenstate of the measurement apparatus is compatible with physical reality.<n>We also develop a continuous description of a quantum measurement finding that its repeated-measurement statistics drastically differ from the projective case.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a protocol to test whether the postulate of a measurement acting as an instantaneous projection onto an eigenstate of the measurement apparatus is compatible with physical reality. This approach is solely based on repeated measurements of local quantities with frequencies that are within reach of analog quantum simulation platforms, for instance Rydberg atom arrays or ultracold gases in optical lattices. Crucially, we also develop a continuous description of a quantum measurement finding that its repeated-measurement statistics (RMS) drastically differ from the projective case. This description is based on very general assumptions about quantum systems, most importantly maintaining continuous dynamics of the coherent part of the state. Our findings imply that the significantly different measurement statistics in the collapse-free description should be qualitatively replicated by any modification of standard quantum theory that is lacking explicit wave-function collapses.
Related papers
- Work Statistics and Quantum Trajectories: No-Click Limit and non-Hermitian Hamiltonians [50.24983453990065]
We present a framework for quantum work statistics in continuously monitored quantum systems.<n>Our approach naturally incorporates non-Hermitian dynamics arising from quantum jump processes.<n>We illustrate our theoretical framework by analyzing a one-dimensional transverse-field Ising model under local spin monitoring.
arXiv Detail & Related papers (2025-04-15T23:21:58Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.<n>This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Analysing quantum systems with randomised measurements [0.4179230671838898]
We present the advancements made in utilising randomised measurements in various scenarios of quantum information science.
We describe how to detect and characterise different forms of entanglement, including genuine multipartite entanglement and bound entanglement.
We also present an overview on the estimation of non-linear functions of quantum states and shadow tomography from randomised measurements.
arXiv Detail & Related papers (2023-07-03T18:00:01Z) - Interferometric phase estimation and quantum resources dynamics in Bell
coherent-states superpositions generated via a unitary beam splitter [0.0]
We propose a scheme to generate Bell coherent-states superpositions through the action of a beam splitter.
Different quantifiers are used to measure the quantumness in the output state.
arXiv Detail & Related papers (2023-06-05T08:46:39Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Back-action Limits in Dispersively Measured Bose-Einstein
Condensates [0.0]
We theoretically and experimentally characterize quantum back-action in atomic Bose-Einstein condensates interacting with a far-from resonant laser beam.
We experimentally quantify the resulting wavefunction change in terms of the contrast of a Ramsey interferometer.
This result is a necessary precursor for achieving true quantum back-action limited measurements of quantum gases.
arXiv Detail & Related papers (2022-09-09T17:04:36Z) - Decoding Measurement-Prepared Quantum Phases and Transitions: from Ising
model to gauge theory, and beyond [3.079076817894202]
Measurements allow efficient preparation of interesting quantum many-body states with long-range entanglement.
We demonstrate that the so-called conformal quantum critical points can be obtained by performing general single-site measurements.
arXiv Detail & Related papers (2022-08-24T17:59:58Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - A locally deterministic, detector-based model of quantum measurement [0.0]
This paper describes a simple, causally deterministic model of quantum measurement based on an amplitude threshold detection scheme.
Surprisingly, it is found to reproduce many phenomena normally thought to be uniquely quantum in nature.
arXiv Detail & Related papers (2021-04-26T18:01:10Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.