Dynamic Fraud Detection: Integrating Reinforcement Learning into Graph Neural Networks
- URL: http://arxiv.org/abs/2409.09892v1
- Date: Sun, 15 Sep 2024 23:08:31 GMT
- Title: Dynamic Fraud Detection: Integrating Reinforcement Learning into Graph Neural Networks
- Authors: Yuxin Dong, Jianhua Yao, Jiajing Wang, Yingbin Liang, Shuhan Liao, Minheng Xiao,
- Abstract summary: Graph neural networks are a type of deep learning model that can utilize the interactive relationships within graph structures.
fraudulent activities only account for a very small part of transaction transfers.
fraudsters often disguise their behavior, which can have a negative impact on the final prediction results.
- Score: 39.54354926067617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Financial fraud refers to the act of obtaining financial benefits through dishonest means. Such behavior not only disrupts the order of the financial market but also harms economic and social development and breeds other illegal and criminal activities. With the popularization of the internet and online payment methods, many fraudulent activities and money laundering behaviors in life have shifted from offline to online, posing a great challenge to regulatory authorities. How to efficiently detect these financial fraud activities has become an urgent issue that needs to be resolved. Graph neural networks are a type of deep learning model that can utilize the interactive relationships within graph structures, and they have been widely applied in the field of fraud detection. However, there are still some issues. First, fraudulent activities only account for a very small part of transaction transfers, leading to an inevitable problem of label imbalance in fraud detection. At the same time, fraudsters often disguise their behavior, which can have a negative impact on the final prediction results. In addition, existing research has overlooked the importance of balancing neighbor information and central node information. For example, when the central node has too many neighbors, the features of the central node itself are often neglected. Finally, fraud activities and patterns are constantly changing over time, so considering the dynamic evolution of graph edge relationships is also very important.
Related papers
- Heterogeneous Graph Auto-Encoder for CreditCard Fraud Detection [0.7864304771129751]
This paper proposes a novel approach for credit card fraud detection using Graph Neural Networks (GNNs) with attention mechanisms applied to heterogeneous graph representations of financial data.
The proposed model outperforms benchmark algorithms such as Graph Sage and FI-GRL, achieving a superior AUC-PR of 0.89 and an F1-score of 0.81.
arXiv Detail & Related papers (2024-10-10T17:05:27Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Fraudulent User Detection Via Behavior Information Aggregation Network
(BIAN) On Large-Scale Financial Social Network [8.687460943376605]
We propose a novel behavior information aggregation network (BIAN) to combine the user behaviors with other user features.
The experimental results on a real-world large-scale financial social network dataset, DGraph, show that BIAN obtains the 10.2% gain in AUROC.
arXiv Detail & Related papers (2022-11-04T08:33:06Z) - A Combination of Deep Neural Networks and K-Nearest Neighbors for Credit
Card Fraud Detection [0.0]
The paper implements new techniques, which contains of under-sampling algorithms, K-nearest Neighbor Algorithm (KNN) and Deep Neural Network (KNN)
The performance evaluation showed that DNN model gives precise high accuracy (98.12%), which shows the good ability of presented method to detect fraudulent transactions.
arXiv Detail & Related papers (2022-05-27T10:33:27Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Supporting Financial Inclusion with Graph Machine Learning and Super-App
Alternative Data [63.942632088208505]
Super-Apps have changed the way we think about the interactions between users and commerce.
This paper investigates how different interactions between users within a Super-App provide a new source of information to predict borrower behavior.
arXiv Detail & Related papers (2021-02-19T15:13:06Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
The Cold-start is a significant problem referring to the failure of a detection system to recognize the authenticity of a new user.
In this paper, we model a review system as a Heterogeneous InformationNetwork (HIN) which enables a unique representation to every component.
HIN with graph induction helps to address the camouflage issue (fraudsterswith genuine reviews) which has shown to be more severe when it is coupled with cold-start, i.e., new fraudsters with genuine first reviews.
arXiv Detail & Related papers (2020-06-10T08:20:13Z) - A Semi-supervised Graph Attentive Network for Financial Fraud Detection [30.645390612737266]
We propose a semi-supervised attentive graph neural network, namedSemiSemiGNN, to utilize the multi-view labeled and unlabeled data for fraud detection.
By utilizing the social relations and the user attributes, our method can achieve a better accuracy compared with the state-of-the-art methods on two tasks.
arXiv Detail & Related papers (2020-02-28T10:35:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.