Mining of Switching Sparse Networks for Missing Value Imputation in Multivariate Time Series
- URL: http://arxiv.org/abs/2409.09930v1
- Date: Mon, 16 Sep 2024 02:08:33 GMT
- Title: Mining of Switching Sparse Networks for Missing Value Imputation in Multivariate Time Series
- Authors: Kohei Obata, Koki Kawabata, Yasuko Matsubara, Yasushi Sakurai,
- Abstract summary: MissNet is designed to exploit temporal dependency with a state-space model and inter-correlation by switching sparse networks.
Our algorithm, which scales linearly with reference to the length of the data, alternatively infers networks and fills in missing values using the networks.
- Score: 7.872208477823466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time series data suffer from the problem of missing values, which hinders the application of many analytical methods. To achieve the accurate imputation of these missing values, exploiting inter-correlation by employing the relationships between sequences (i.e., a network) is as important as the use of temporal dependency, since a sequence normally correlates with other sequences. Moreover, exploiting an adequate network depending on time is also necessary since the network varies over time. However, in real-world scenarios, we normally know neither the network structure nor when the network changes beforehand. Here, we propose a missing value imputation method for multivariate time series, namely MissNet, that is designed to exploit temporal dependency with a state-space model and inter-correlation by switching sparse networks. The network encodes conditional independence between features, which helps us understand the important relationships for imputation visually. Our algorithm, which scales linearly with reference to the length of the data, alternatively infers networks and fills in missing values using the networks while discovering the switching of the networks. Extensive experiments demonstrate that MissNet outperforms the state-of-the-art algorithms for multivariate time series imputation and provides interpretable results.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
STING (Self-attention based Time-series Imputation Networks using GAN) is proposed.
We take advantage of generative adversarial networks and bidirectional recurrent neural networks to learn latent representations of the time series.
Experimental results on three real-world datasets demonstrate that STING outperforms the existing state-of-the-art methods in terms of imputation accuracy.
arXiv Detail & Related papers (2022-09-22T06:06:56Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
We propose a flexible model that is capable of identifying both state- and time-dependent switching dynamics.
State-dependent switching is enabled by a recurrent state-to-switch connection.
An explicit duration count variable is used to improve the time-dependent switching behavior.
arXiv Detail & Related papers (2021-10-26T17:35:21Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Multivariate Time Series Imputation by Graph Neural Networks [13.308026049048717]
We introduce a graph neural network architecture, named GRIL, which aims at reconstructing missing data in different channels of a multivariate time series.
Preliminary results show that our model outperforms state-of-the-art methods in the imputation task on relevant benchmarks.
arXiv Detail & Related papers (2021-07-31T17:47:10Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Gated Res2Net for Multivariate Time Series Analysis [8.685598820025383]
We propose a backbone convolutional neural network based on the thought of gated mechanism and Res2Net.
GRes2Net has better performances over the state-of-the-art methods thus indicating the superiority.
arXiv Detail & Related papers (2020-09-19T01:45:41Z) - Instance Explainable Temporal Network For Multivariate Timeseries [0.0]
We propose a novel network (IETNet) that identifies the important channels in the classification decision for each instance of inference.
IETNet is an end-to-end network that combines temporal feature extraction, variable selection, and joint variable interaction into a single learning framework.
arXiv Detail & Related papers (2020-05-26T20:55:24Z) - Depth Enables Long-Term Memory for Recurrent Neural Networks [0.0]
We introduce a measure of the network's ability to support information flow across time, referred to as the Start-End separation rank.
We prove that deep recurrent networks support Start-End separation ranks which are higher than those supported by their shallow counterparts.
arXiv Detail & Related papers (2020-03-23T10:29:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.