論文の概要: From Bytes to Bites: Using Country Specific Machine Learning Models to Predict Famine
- arxiv url: http://arxiv.org/abs/2409.09980v1
- Date: Mon, 16 Sep 2024 04:23:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 16:40:52.850233
- Title: From Bytes to Bites: Using Country Specific Machine Learning Models to Predict Famine
- Title(参考訳): バイトからビットへ:国別機械学習モデルを使って飢餓を予測する
- Authors: Salloni Kapoor, Simeon Sayer,
- Abstract要約: 本研究では、飢餓と飢餓の危機に関する意思決定を予測し、伝達するために機械学習をどのように利用できるかを検討する。
経済指標は一貫して平均的な家庭栄養の最も重要な予測要因であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hunger crises are critical global issues affecting millions, particularly in low-income and developing countries. This research investigates how machine learning can be utilized to predict and inform decisions regarding famine and hunger crises. By leveraging a diverse set of variables (natural, economic, and conflict-related), three machine learning models (Linear Regression, XGBoost, and RandomForestRegressor) were employed to predict food consumption scores, a key indicator of household nutrition. The RandomForestRegressor emerged as the most accurate model, with an average prediction error of 10.6%, though accuracy varied significantly across countries, ranging from 2% to over 30%. Notably, economic indicators were consistently the most significant predictors of average household nutrition, while no single feature dominated across all regions, underscoring the necessity for comprehensive data collection and tailored, country-specific models. These findings highlight the potential of machine learning, particularly Random Forests, to enhance famine prediction, suggesting that continued research and improved data gathering are essential for more effective global hunger forecasting.
- Abstract(参考訳): 飢餓の危機は、特に低所得国や発展途上国で、何百万もの人に影響を及ぼす重要な世界的な問題である。
本研究では、飢餓と飢餓の危機に関する意思決定を予測し、伝達するために機械学習をどのように利用できるかを検討する。
多様な変数(自然、経済、紛争関連)を活用することで、家庭栄養の重要な指標である食品消費スコアを予測するために、3つの機械学習モデル(Linear Regression、XGBoost、RandomForestRegressor)が採用された。
RandomForestRegressorは、平均予測誤差が10.6%の最も正確なモデルとして登場したが、精度は2%から30%を超える国で大きく変化した。
特に、経済指標は平均的な家庭の栄養の最も重要な予測因子であり、すべての地域で支配的な特徴は存在せず、包括的なデータ収集と国別モデルの必要性を強調した。
これらの知見は、飢餓予測を強化する機械学習、特にランダムフォレストの可能性を強調し、より効果的な飢餓予測には、継続的な研究とデータ収集の改善が不可欠であることを示唆している。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing [6.65506917941232]
本研究では,アルゼンチン,ウルグアイ,ドイツにおけるダイズ,小麦,ラピセド作物の収量予測の課題に焦点をあてる。
我々の目標は、衛星画像の大規模なデータセット、追加のデータモダリティ、収量マップを用いて、これらの作物の予測モデルを開発し、説明することである。
モデル説明可能性について,入力特徴量の定量化,重要な成長段階の同定,フィールドレベルでの収量変動の解析,精度の低い予測を行う。
論文 参考訳(メタデータ) (2024-07-11T08:23:46Z) - Innovations in Agricultural Forecasting: A Multivariate Regression Study on Global Crop Yield Prediction [0.0]
本研究は,27年間で開発途上国37カ国の収量予測に6つの回帰モデルを適用した。
4つの主要な訓練パラメータ, 殺虫剤 (tonnes), 降雨剤 (mm), 温度 (Celsius), 収量 (hg/ha) が与えられた結果, 我々のランダムフォレスト回帰モデルは0.94の判定係数 (r2) を達成した。
論文 参考訳(メタデータ) (2023-12-04T18:45:28Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
2021年現在、世界中で約8億8800万人が飢餓と栄養失調に見舞われている。
気候変動は農地の適性に大きな影響を及ぼし、深刻な食糧不足に繋がる可能性がある。
本研究は,経済・社会問題に苦しむ中央ユーラシアを対象とする。
論文 参考訳(メタデータ) (2023-10-24T15:15:28Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
本研究では,機械学習の社会的影響を,特定の文脈に展開されるモデルの集合を考慮し検討する。
デプロイされた機械学習はシステム障害を起こしやすいため、利用可能なすべてのモデルに排他的に誤分類されているユーザもいます。
これらの例は、エコシステムレベルの分析が、機械学習の社会的影響を特徴づける独自の強みを持っていることを示している。
論文 参考訳(メタデータ) (2023-07-12T01:11:52Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Time Series Prediction for Food sustainability [0.0]
過去の各国の天然資源の全体利用状況を理解することにより、各国の需要を予測できる。
提案手法は,将来特定の期間に各国の不足に耐えうるトップk製品を予測する統計的回帰モデルを用いて,機械学習システムを実装することで構成される。
論文 参考訳(メタデータ) (2022-09-14T19:27:31Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Food safety risk prediction with Deep Learning models using categorical
embeddings on European Union data [1.4502611532302039]
欧州連合(EU)は1977年に、国境を越えた監視を確保するため、取引された商品に関する不規則事項を登録し始めた。
食品問題に関連するデータは、将来の通知のいくつかの機能を予測するために、機械学習技術によって取り除かれ分析された。
その結果,74.08%から93.06%の精度でこれらの特徴を予測できることがわかった。
論文 参考訳(メタデータ) (2020-09-14T19:36:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。