論文の概要: Advancing Towards a Marine Digital Twin Platform: Modeling the Mar Menor Coastal Lagoon Ecosystem in the South Western Mediterranean
- arxiv url: http://arxiv.org/abs/2409.10134v1
- Date: Mon, 16 Sep 2024 10:01:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-09-17 16:00:03.488469
- Title: Advancing Towards a Marine Digital Twin Platform: Modeling the Mar Menor Coastal Lagoon Ecosystem in the South Western Mediterranean
- Title(参考訳): 海洋デジタル双生児プラットフォームへの展開:南地中海における海面沿岸ラグーン生態系のモデル化
- Authors: Yu Ye, Aurora González-Vidal, Alejandro Cisterna-García, Angel Pérez-Ruzafa, Miguel A. Zamora Izquierdo, Antonio F. Skarmeta,
- Abstract要約: 沿岸の海洋生態系は、人為的活動や気候変動からの圧力が増している。
本稿では,マルメナール沿岸ラグーン生態系のモデル化を目的としたマリンデジタルツインプラットフォームの開発を開拓する。
- 参考スコア(独自算出の注目度): 39.58165317223655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coastal marine ecosystems face mounting pressures from anthropogenic activities and climate change, necessitating advanced monitoring and modeling approaches for effective management. This paper pioneers the development of a Marine Digital Twin Platform aimed at modeling the Mar Menor Coastal Lagoon Ecosystem in the Region of Murcia. The platform leverages Artificial Intelligence to emulate complex hydrological and ecological models, facilitating the simulation of what-if scenarios to predict ecosystem responses to various stressors. We integrate diverse datasets from public sources to construct a comprehensive digital representation of the lagoon's dynamics. The platform's modular design enables real-time stakeholder engagement and informed decision-making in marine management. Our work contributes to the ongoing discourse on advancing marine science through innovative digital twin technologies.
- Abstract(参考訳): 沿岸の海洋生態系は、人為的活動や気候変動からの圧力が増し、効率的な管理のために高度なモニタリングとモデリングのアプローチが必要である。
本稿では,マルメナール沿岸ラグーン生態系のモデル化を目的としたマリンデジタルツインプラットフォームの開発を開拓する。
このプラットフォームは人工知能を利用して複雑な水文学と生態学のモデルをエミュレートする。
パブリックソースからの多様なデータセットを統合し、ラグーンのダイナミクスの包括的なデジタル表現を構築する。
このプラットフォームのモジュラーデザインは、リアルタイムのステークホルダーの関与と、海洋管理における情報的意思決定を可能にする。
我々の研究は、革新的なデジタルツイン技術による海洋科学の進歩に関する議論に貢献する。
関連論文リスト
- AI-Enhanced Automatic Design of Efficient Underwater Gliders [60.45821679800442]
自動設計フレームワークの構築は、グライダー形状を表現する複雑さと、複雑な固体-流体相互作用をモデル化する際の計算コストが高いため、困難である。
非自明な船体形状の水中ロボットを作れるようにすることで、これらの制限を克服するAI強化型自動計算フレームワークを導入する。
提案手法は, 形状と制御信号の両面を協調的に最適化するアルゴリズムで, 低次幾何表現と微分可能なニューラルネット型流体代理モデルを用いる。
論文 参考訳(メタデータ) (2025-04-30T23:55:44Z) - Fourier Neural Operator based surrogates for $CO_2$ storage in realistic geologies [57.23978190717341]
我々は,$CO$ plume マイグレーションのリアルタイム・高分解能シミュレーションのためのニューラル演算子(FNO)モデルを開発した。
このモデルは、現実的な地下パラメータから生成された包括的なデータセットに基づいて訓練される。
本稿では,実際の地質学的位置を評価する上で重要なモデルから予測の信頼性を向上させるための様々な戦略を提案する。
論文 参考訳(メタデータ) (2025-03-14T02:58:24Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
本稿では,視覚的位置認識(VPR),特徴マッチング,画像分割を組み合わせた統合パイプラインを提案する。
本手法は, 再検討領域のロバスト同定, 剛性変換の推定, 生態系変化の下流解析を可能にする。
論文 参考訳(メタデータ) (2025-03-06T05:13:19Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
自律運転の最近の進歩は、堅牢な世界モデリングの進歩によって推進されている。
本稿では、自律運転の世界モデルにおける最近の進歩を体系的にレビューする。
論文 参考訳(メタデータ) (2025-01-20T04:00:02Z) - Regional Ocean Forecasting with Hierarchical Graph Neural Networks [1.4146420810689422]
我々は、高解像度の中距離海洋予測用に設計されたニューラルネットワークであるSeaCastを紹介する。
SeaCastはグラフベースのフレームワークを使用して、海洋グリッドの複雑な幾何学を処理し、地域の海洋環境に合わせて外部の強制データを統合する。
コペルニクス海洋局が提供した地中海の運用数値モデルを用いて,高空間分解能実験により本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-10-15T17:34:50Z) - Coupled Ocean-Atmosphere Dynamics in a Machine Learning Earth System Model [0.6008008212472723]
我々は,高分解能(0.25deg)人工知能/機械学習(AI/ML)結合土系モデルであるオーシャンリンク大気(Ola)モデルを提案する。
その結果,Olaは適切な位相速度を持つ熱帯海洋波を含む海洋-大気結合力学の学習特性を示すことがわかった。
本研究では,地球物理流体力学研究所のSPEARモデルと比較し,エルニーニョ/南方振動(ENSO)の予測能力を示す。
論文 参考訳(メタデータ) (2024-06-12T20:29:14Z) - Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond [101.15395503285804]
一般世界モデルは、人工知能(AGI)の実現への決定的な道のりを表現している
本調査では,世界モデルの最新動向を包括的に調査する。
我々は,世界モデルの課題と限界について検討し,今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-05-06T14:37:07Z) - BenthIQ: a Transformer-Based Benthic Classification Model for Coral
Restoration [4.931399476945033]
サンゴ礁は海洋生物多様性、沿岸保護、世界の人間の生活を支えるために不可欠である。
ベントニック合成マップを作成するための現在の手法は、しばしば空間被覆と分解能の間に妥協する。
水中基板の高精度な分類のために設計されたマルチラベルセマンティックセマンティックセマンティクスネットワークであるBenthIQを紹介する。
論文 参考訳(メタデータ) (2023-11-22T19:25:31Z) - AI-GOMS: Large AI-Driven Global Ocean Modeling System [3.635120568177384]
海洋モデリングは、海洋の物理的、化学的、生物学的過程をシミュレートするための強力なツールである。
本稿では,AIによる大規模海洋モデリングシステムであるAI-GOMSについて紹介する。
論文 参考訳(メタデータ) (2023-08-06T15:59:30Z) - FisHook -- An Optimized Approach to Marine Specie Classification using
MobileNetV2 [5.565562836494568]
海洋生物の分類とモニタリングは、その分布、人口動態、そしてそれらに対する人間の活動の影響を理解するのに役立ちます。
ディープラーニングアルゴリズムは、海洋生物を効率的に分類し、海洋生態系の監視と管理を容易にする。
論文 参考訳(メタデータ) (2023-04-04T04:30:25Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
炭素捕獲貯蔵(CCS)は、地球規模の脱炭酸に不可欠な役割を担っている。
CCS展開のスケールアップには, 貯留層圧力上昇とガス配管マイグレーションの高精度かつ高精度なモデリングが必要である。
我々は,高分解能な3D CO2ストレージモデリングのための機械学習フレームワークであるNested Fourier Neural Operator (FNO)を,盆地スケールで導入した。
論文 参考訳(メタデータ) (2022-10-31T04:04:03Z) - Toward Foundation Models for Earth Monitoring: Proposal for a Climate
Change Benchmark [95.19070157520633]
近年の自己スーパービジョンの進歩は、大量の教師なしデータ上で大規模なニューラルネットワークを事前訓練することで、下流タスクの一般化が著しく増加することを示している。
基礎モデルとして最近作られたそのようなモデルは、自然言語処理の分野に転換してきた。
気候変動に関連する様々な下流タスクからなる新しいベンチマークを開発することを提案する。
論文 参考訳(メタデータ) (2021-12-01T15:38:19Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
2つの気候モデルのうちの1つで第3の中間安定状態が見つかる。
我々のアプローチを組み合わせることで、海洋熱輸送とエントロピー生産の負のフィードバックが地球の気候の地形をどのように大きく変えるかを特定することができる。
論文 参考訳(メタデータ) (2020-10-20T15:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。