論文の概要: P2U-SLAM: A Monocular Wide-FoV SLAM System Based on Point Uncertainty and Pose Uncertainty
- arxiv url: http://arxiv.org/abs/2409.10143v1
- Date: Mon, 16 Sep 2024 10:13:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 16:00:03.476053
- Title: P2U-SLAM: A Monocular Wide-FoV SLAM System Based on Point Uncertainty and Pose Uncertainty
- Title(参考訳): P2U-SLAM:ポイント不確かさとポス不確かさに基づく単眼広FoVSLAMシステム
- Authors: Yufan Zhang, Kailun Yang, Ze Wang, Kaiwei Wang,
- Abstract要約: P2U-SLAM(P2U-SLAM)は、広視野カメラ(FoV)を備えた視覚同時マッピング(SLAM)システムである。
広FoV視覚入力を持つ2つの人気のある公開データセットから27のシーケンスを網羅的に評価する。
- 参考スコア(独自算出の注目度): 26.221380165148418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents P2U-SLAM, a visual Simultaneous Localization And Mapping (SLAM) system with a wide Field of View (FoV) camera, which utilizes pose uncertainty and point uncertainty. While the wide FoV enables considerable repetitive observations of historical map points for matching cross-view features, the data properties of the historical map points and the poses of historical keyframes have changed during the optimization process. The neglect of data property changes triggers the absence of a partial information matrix in optimization and leads to the risk of long-term positioning performance degradation. The purpose of our research is to reduce the risk of the wide field of view visual input to the SLAM system. Based on the conditional probability model, this work reveals the definite impact of the above data properties changes on the optimization process, concretizes it as point uncertainty and pose uncertainty, and gives a specific mathematical form. P2U-SLAM respectively embeds point uncertainty and pose uncertainty into the tracking module and local mapping, and updates these uncertainties after each optimization operation including local mapping, map merging, and loop closing. We present an exhaustive evaluation in 27 sequences from two popular public datasets with wide-FoV visual input. P2U-SLAM shows excellent performance compared with other state-of-the-art methods. The source code will be made publicly available at https://github.com/BambValley/P2U-SLAM.
- Abstract(参考訳): 本稿では,広視野カメラを用いた視覚的局所化マッピング(SLAM)システムであるP2U-SLAMについて述べる。
広帯域のFoVは、クロスビュー特徴に対応するために、歴史的地図点の繰り返し観測を可能にするが、過去の地図点のデータ特性と歴史的なキーフレームのポーズは、最適化の過程で変化している。
データ特性の変化の無視は、最適化における部分情報行列の欠如を招き、長期位置決め性能劣化のリスクを引き起こす。
本研究の目的は、SLAMシステムに対する視野の広い視覚入力のリスクを低減することである。
条件付き確率モデルに基づいて、上記のデータ特性の変化が最適化プロセスに与える影響を明らかにし、点不確かさとして発展させ、不確かさを生じさせ、特定の数学的形式を与える。
P2U-SLAM はそれぞれ点不確かさを埋め込み、追跡モジュールと局所写像に不確かさを生じさせ、局所写像、マップマージ、ループ閉包を含む各最適化操作後にこれらの不確かさを更新する。
広FoV視覚入力を持つ2つの人気のある公開データセットから27のシーケンスを網羅的に評価する。
P2U-SLAMは他の最先端手法と比較して優れた性能を示す。
ソースコードはhttps://github.com/BambValley/P2U-SLAMで公開されている。
関連論文リスト
- Visibility-Aware Keypoint Localization for 6DoF Object Pose Estimation [56.07676459156789]
2次元画像における3Dキーポイントの局所化は、6DoFオブジェクトのポーズ推定のための3D-2D対応を確立する効果的な方法である。
本稿では、重要なキーポイントを可視性の観点からローカライズすることでこの問題に対処する。
我々は、可視性を考慮した重要度と最先端のポーズ推定アルゴリズムを統合することにより、VAPO(Visibility-Aware POse estimator)を構築する。
論文 参考訳(メタデータ) (2024-03-21T16:59:45Z) - CPPF++: Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation [67.12857074801731]
そこで本研究では,シミュレートからリアルなポーズ推定のための新しい手法であるCPPF++を提案する。
投票衝突による課題に対処するため,投票の不確実性をモデル化する新たなアプローチを提案する。
ノイズの多いペアフィルタリング、オンラインアライメント最適化、機能アンサンブルなど、いくつかの革新的なモジュールを組み込んでいます。
論文 参考訳(メタデータ) (2022-11-24T03:27:00Z) - Unveiling The Mask of Position-Information Pattern Through the Mist of
Image Features [75.62755703738696]
近年の研究では、畳み込みニューラルネットワークにおけるパディングが絶対位置情報を符号化していることが示されている。
位置情報の強度を定量化する既存の指標は信頼性が低いままである。
符号化された位置情報を計測(および可視化)するための新しい指標を提案する。
論文 参考訳(メタデータ) (2022-06-02T17:59:57Z) - FD-SLAM: 3-D Reconstruction Using Features and Dense Matching [18.577229381683434]
本稿では,高密度フレーム・モデル・オードメトリーを用いたRGB-D SLAMシステムを提案する。
マップ構築をさらに安定化させる3次元特徴に基づく学習ベースのループクロージャコンポーネントを組み込んだ。
このアプローチは、他のシステムがしばしば失敗する大きなシーンにも拡張できる。
論文 参考訳(メタデータ) (2022-03-25T18:58:46Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - PANet: Perspective-Aware Network with Dynamic Receptive Fields and
Self-Distilling Supervision for Crowd Counting [63.84828478688975]
本稿では,視点問題に対処するため,PANetと呼ばれる新しい視点認識手法を提案する。
対象物のサイズが視点効果によって1つの画像で大きく変化するという観測に基づいて,動的受容場(DRF)フレームワークを提案する。
このフレームワークは、入力画像に応じて拡張畳み込みパラメータによって受容野を調整することができ、モデルが各局所領域についてより識別的な特徴を抽出するのに役立つ。
論文 参考訳(メタデータ) (2021-10-31T04:43:05Z) - Greedy-Based Feature Selection for Efficient LiDAR SLAM [12.257338124961622]
本論文では,L-SLAMシステムの精度と効率を,機能のサブセットを積極的に選択することで大幅に向上できることを実証する。
提案手法は,最先端のL-SLAMシステムと比較して,ローカライズ誤差と高速化が低いことを示す。
論文 参考訳(メタデータ) (2021-03-24T11:03:16Z) - Accurate Visual-Inertial SLAM by Feature Re-identification [4.263022790692934]
空間時空間感度サブグローバルマップから既存の特徴を再同定し,効率的なドリフトレスSLAM法を提案する。
本手法は67.3%,87.5%の絶対翻訳誤差を最小の計算コストで削減する。
論文 参考訳(メタデータ) (2021-02-26T12:54:33Z) - Early Bird: Loop Closures from Opposing Viewpoints for
Perceptually-Aliased Indoor Environments [35.663671249819124]
本稿では,視点変化と知覚的エイリアスを同時に扱う新しい研究を提案する。
本稿では,VPRとSLAMの統合により,VPRの性能向上,特徴対応,グラフサブモジュールのポーズが著しく促進されることを示す。
知覚的エイリアス化や180度回転する極端な視点変化に拘わらず,最先端のパフォーマンスを実現するローカライズシステムについて初めて紹介する。
論文 参考訳(メタデータ) (2020-10-03T20:18:55Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
我々は,観測された空間コンテキストを捉えるために,グラフ伝搬を採用することを提案する。
次に、注意機構を伝搬に適用し、ネットワークが文脈情報を適応的にモデル化することを奨励する。
最後に、抽出したマルチモーダル特徴を効果的に活用するための対称ゲート融合戦略を導入する。
本稿では,Adaptive Context-Aware Multi-Modal Network (ACMNet) を2つのベンチマークで評価した。
論文 参考訳(メタデータ) (2020-08-25T06:00:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。