Kernel Descent -- a Novel Optimizer for Variational Quantum Algorithms
- URL: http://arxiv.org/abs/2409.10257v1
- Date: Mon, 16 Sep 2024 13:10:26 GMT
- Title: Kernel Descent -- a Novel Optimizer for Variational Quantum Algorithms
- Authors: Lars Simon, Holger Eble, Manuel Radons,
- Abstract summary: We introduce kernel descent, a novel algorithm for minimizing the functions underlying variational quantum algorithms.
In particular, we showcase scenarios in which kernel descent outperforms gradient descent and quantum analytic descent.
Kernel descent sets itself apart with its employment of reproducing kernel Hilbert space techniques in the construction of the local approximations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, variational quantum algorithms have garnered significant attention as a candidate approach for near-term quantum advantage using noisy intermediate-scale quantum (NISQ) devices. In this article we introduce kernel descent, a novel algorithm for minimizing the functions underlying variational quantum algorithms. We compare kernel descent to existing methods and carry out extensive experiments to demonstrate its effectiveness. In particular, we showcase scenarios in which kernel descent outperforms gradient descent and quantum analytic descent. The algorithm follows the well-established scheme of iteratively computing classical local approximations to the objective function and subsequently executing several classical optimization steps with respect to the former. Kernel descent sets itself apart with its employment of reproducing kernel Hilbert space techniques in the construction of the local approximations -- which leads to the observed advantages.
Related papers
- Random coordinate descent: a simple alternative for optimizing parameterized quantum circuits [4.112419132722306]
This paper introduces a random coordinate descent algorithm as a practical and easy-to-implement alternative to the full gradient descent algorithm.
Motivated by the behavior of measurement noise in the practical optimization of parameterized quantum circuits, this paper presents an optimization problem setting amenable to analysis.
arXiv Detail & Related papers (2023-10-31T18:55:45Z) - Pure Quantum Gradient Descent Algorithm and Full Quantum Variational
Eigensolver [0.7149735232319818]
gradient-based gradient descent algorithm is a widely adopted optimization method.
We propose a novel quantum-based gradient calculation method that requires only a single oracle calculation.
We successfully implemented the quantum gradient descent algorithm and applied it to the Variational Quantum Eigensolver (VQE)
arXiv Detail & Related papers (2023-05-07T05:52:41Z) - A quantum advantage over classical for local max cut [48.02822142773719]
Quantum optimization approximation algorithm (QAOA) has a computational advantage over comparable local classical techniques on degree-3 graphs.
Results hint that even small-scale quantum computation, which is relevant to the current state-of the art quantum hardware, could have significant advantages over comparably simple classical.
arXiv Detail & Related papers (2023-04-17T16:42:05Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
We present a new method for small-to-intermediate scale variational algorithms on noisy quantum processors.
Our scheme shifts the computational burden onto the classical component of these hybrid algorithms, greatly reducing the number of queries to the quantum processor.
arXiv Detail & Related papers (2022-11-02T14:11:25Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - A Sublinear-Time Quantum Algorithm for Approximating Partition Functions [0.0]
We present a novel quantum algorithm for estimating Gibbs partition functions in sublinear time.
This is the first speed-up of this type to be obtained over the seminal nearly-linear time of vStefankovivc, Vempala and Vigoda.
arXiv Detail & Related papers (2022-07-18T14:41:48Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.