Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing
- URL: http://arxiv.org/abs/2409.10301v2
- Date: Wed, 20 Nov 2024 16:04:54 GMT
- Title: Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing
- Authors: Atithi Acharya, Romina Yalovetzky, Pierre Minssen, Shouvanik Chakrabarti, Ruslan Shaydulin, Rudy Raymond, Yue Sun, Dylan Herman, Ruben S. Andrist, Grant Salton, Martin J. A. Schuetz, Helmut G. Katzgraber, Marco Pistoia,
- Abstract summary: Portfolio optimization and rebalancing problems with constraints are often intractable or difficult to solve exactly.
Our pipeline consistently decomposes real-world portfolio optimization problems into subproblems with a size reduction of approximately 80%.
By decomposing large problems into several smaller subproblems, the pipeline enables the use of near-term quantum devices as solvers.
- Score: 10.049166866086738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Industrially relevant constrained optimization problems, such as portfolio optimization and portfolio rebalancing, are often intractable or difficult to solve exactly. In this work, we propose and benchmark a decomposition pipeline targeting portfolio optimization and rebalancing problems with constraints. The pipeline decomposes the optimization problem into constrained subproblems, which are then solved separately and aggregated to give a final result. Our pipeline includes three main components: preprocessing of correlation matrices based on random matrix theory, modified spectral clustering based on Newman's algorithm, and risk rebalancing. Our empirical results show that our pipeline consistently decomposes real-world portfolio optimization problems into subproblems with a size reduction of approximately 80%. Since subproblems are then solved independently, our pipeline drastically reduces the total computation time for state-of-the-art solvers. Moreover, by decomposing large problems into several smaller subproblems, the pipeline enables the use of near-term quantum devices as solvers, providing a path toward practical utility of quantum computers in portfolio optimization.
Related papers
- Adaptive Graph Shrinking for Quantum Optimization of Constrained Combinatorial Problems [4.266376725904727]
We propose a hybrid classical--quantum framework based on graph shrinking to reduce the number of variables and constraints in QUBO formulations of optimization problems.<n>Our approach improves solution feasibility, reduces repair complexity, and enhances quantum optimization quality on hardware-limited instances.
arXiv Detail & Related papers (2025-06-17T07:11:48Z) - Efficient QAOA Architecture for Solving Multi-Constrained Optimization Problems [3.757262277494307]
This paper proposes a novel combination of constraint encoding methods for the Quantum Approximate Optimization Ansatz.<n>One-hot constraints are enforced through $XY$-mixers that restrict the search space to the feasible sub-space naturally.<n>Since $XY$-mixers restrict the search space, specific state vector entries are always zero and can be omitted from the simulation, saving valuable memory and computing resources.
arXiv Detail & Related papers (2025-06-03T17:46:53Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
We introduce a new data efficient and highly parallelizable operator learning approach with reduced memory requirement and better generalization.
MG-TFNO scales to large resolutions by leveraging local and global structures of full-scale, real-world phenomena.
We demonstrate superior performance on the turbulent Navier-Stokes equations where we achieve less than half the error with over 150x compression.
arXiv Detail & Related papers (2023-09-29T20:18:52Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Portfolio optimization with discrete simulated annealing [0.0]
We present an integer optimization method to find optimal portfolios in the presence of discretized convex and non- convex cost functions.
This allows us to achieve a solution with a given quality.
arXiv Detail & Related papers (2022-10-03T10:39:05Z) - Sparse Polynomial Optimization: Theory and Practice [5.27013884159732]
Book presents several efforts to tackle this challenge with important scientific implications.
It provides alternative optimization schemes that scale well in terms of computational complexity.
We present sparsity-exploiting hierarchies of relaxations, for either unconstrained or constrained problems.
arXiv Detail & Related papers (2022-08-23T18:56:05Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
We study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape.
We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases.
arXiv Detail & Related papers (2021-10-18T18:00:36Z) - Globally optimizing QAOA circuit depth for constrained optimization
problems [0.2609784101826761]
We develop a global variable substitution method that reduces $n$-variable monomials in optimization problems to equivalent instances with monomials in fewer variables.
We analyze the optimal quantum circuit depth needed to solve the reduced problem using the quantum approximate optimization algorithm.
arXiv Detail & Related papers (2021-08-06T19:25:45Z) - On the Convexity of Discrete Time Covariance Steering in Stochastic
Linear Systems with Wasserstein Terminal Cost [1.1602089225841632]
We show that when the terminal state covariance is upper bounded, with respect to the L"owner partial order, our problem admits a unique global minimizing state feedback gain.
The results of this paper set the stage for the development of specialized control design tools.
arXiv Detail & Related papers (2021-03-25T03:24:52Z) - Solving the Optimal Trading Trajectory Problem Using Simulated
Bifurcation [0.0]
We use an optimization procedure based on simulated bifurcation (SB) to solve the integer portfolio and trading trajectory problem with an unprecedented computational speed.
We show first numerical results for portfolios of up to 1000 assets, which already confirm the power of the SB algorithm for its novel use-case as a portfolio and trading trajectory-case.
arXiv Detail & Related papers (2020-09-17T16:42:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.