論文の概要: GLEAN: Generative Learning for Eliminating Adversarial Noise
- arxiv url: http://arxiv.org/abs/2409.10578v1
- Date: Sun, 15 Sep 2024 18:28:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 20:59:28.952241
- Title: GLEAN: Generative Learning for Eliminating Adversarial Noise
- Title(参考訳): GLEAN: 対向騒音除去のための生成学習
- Authors: Justin Lyu Kim, Kyoungwan Woo,
- Abstract要約: スタイルの模倣攻撃は、知覚できないノイズから厳しい品質劣化まで、人工物を引き起こす可能性がある。
様々な種類の摂動をデジタルアートに適用するツールであるGlazeは、スタイルの模倣攻撃を防ぐことに成功している。
我々は,GLEAN を用いた I2I 生成ネットワークを提案し,GLEAN 前後のスタイル模倣攻撃の性能評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the age of powerful diffusion models such as DALL-E and Stable Diffusion, many in the digital art community have suffered style mimicry attacks due to fine-tuning these models on their works. The ability to mimic an artist's style via text-to-image diffusion models raises serious ethical issues, especially without explicit consent. Glaze, a tool that applies various ranges of perturbations to digital art, has shown significant success in preventing style mimicry attacks, at the cost of artifacts ranging from imperceptible noise to severe quality degradation. The release of Glaze has sparked further discussions regarding the effectiveness of similar protection methods. In this paper, we propose GLEAN- applying I2I generative networks to strip perturbations from Glazed images, evaluating the performance of style mimicry attacks before and after GLEAN on the results of Glaze. GLEAN aims to support and enhance Glaze by highlighting its limitations and encouraging further development.
- Abstract(参考訳): DALL-EやStable Diffusionのような強力な拡散モデルの時代には、デジタルアートコミュニティの多くは、これらのモデルを細調整することで、スタイルの模倣攻撃を受けた。
テキストから画像への拡散モデルによってアーティストのスタイルを模倣する能力は、特に明示的な同意なしに、深刻な倫理的問題を提起する。
様々な種類の摂動をデジタルアートに適用するツールであるGlazeは、知覚不可能なノイズから厳しい品質劣化に至るまでの人工物のコストにおいて、スタイルの模倣攻撃を防ぐことに大きな成功を収めている。
Glazeのリリースは、同様の保護方法の有効性に関するさらなる議論を引き起こした。
本稿では,GLEAN を用いた I2I 生成ネットワークを用いて,GLEAN の擬似攻撃前および後におけるグラズ画像からの摂動を除去する手法を提案する。
GLEANはその制限を強調し、さらなる開発を促進することで、Glazeのサポートと強化を目指している。
関連論文リスト
- FreeEnhance: Tuning-Free Image Enhancement via Content-Consistent Noising-and-Denoising Process [120.91393949012014]
FreeEnhanceは、既製の画像拡散モデルを用いたコンテンツ一貫性のある画像強調のためのフレームワークである。
ノイズ発生段階では、FreeEnhanceは、元の画像の高頻度パターンを保存するために、より周波数の高い領域により軽いノイズを加えるように考案されている。
この段階では3つの目標特性を予測された雑音の規則化の制約として提示し,高精度で視覚的品質の高い画像の強調を行う。
論文 参考訳(メタデータ) (2024-09-11T17:58:50Z) - Pixel Is Not A Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models [9.905296922309157]
拡散モデルは高品質な画像合成のための強力な生成モデルとして登場し、それに基づく画像編集技術も数多くある。
従来の研究は、知覚不能な摂動を加えることで、画像の拡散に基づく編集を防ごうとしてきた。
本研究は,UNETの脆弱性を悪用した特徴表現攻撃損失と,保護された画像の自然性を高めるための潜在最適化戦略を備えた,新たな攻撃フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-21T17:56:34Z) - Invisible Backdoor Attacks on Diffusion Models [22.08671395877427]
近年の研究では、バックドア攻撃に対する拡散モデルの脆弱性が明らかにされている。
本稿では,目に見えないトリガーの獲得と,挿入されたバックドアのステルスネスとレジリエンスの向上を目的とした,革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-02T17:43:19Z) - Perturbing Attention Gives You More Bang for the Buck: Subtle Imaging Perturbations That Efficiently Fool Customized Diffusion Models [11.91784429717735]
疑似潜伏拡散モデル(LDM)に対する汎用的で効率的なアプローチであるCAATを提案する。
画像上の微妙な勾配が相互注意層に大きく影響し,テキストと画像のマッピングが変化することを示す。
実験により、CAATは多様な拡散モデルと互換性があり、ベースライン攻撃法より優れていることが示された。
論文 参考訳(メタデータ) (2024-04-23T14:31:15Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
本稿では,豊富な生成前駆体を含む事前学習型安定拡散(SD)モデルと,階層的表現を統合可能な統一型ヘッド(Uヘッド)と,識別前駆体を提供する適応型専門家からなる,シンプルで効果的なフレームワークを提案する。
包括的調査では、異なる時間ステップで潜伏変数に隠された知覚の粒度や様々なU-netステージなど、バーマスの潜在的な特性が明らかになった。
有望な結果は,有望な学習者としての拡散モデルの可能性を示し,情報的かつ堅牢な視覚表現の確立にその意義を定めている。
論文 参考訳(メタデータ) (2024-01-29T10:36:57Z) - Revealing Vulnerabilities in Stable Diffusion via Targeted Attacks [41.531913152661296]
本稿では,安定拡散に対する標的対向攻撃の問題を定式化し,対向的プロンプトを生成するための枠組みを提案する。
具体的には、安定した拡散を誘導し、特定の画像を生成するための信頼性の高い逆プロンプトを構築するために、勾配に基づく埋め込み最適化を設計する。
逆方向のプロンプトを成功させた後、モデルの脆弱性を引き起こすメカニズムを明らかにする。
論文 参考訳(メタデータ) (2024-01-16T12:15:39Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - A Response to Glaze Purification via IMPRESS [28.1136256537151]
近年の研究では、Glazeによって保護された画像からアートスタイルの模倣を可能にするため、Glazeによって追加された保護摂動を除去する新たなメカニズムが提案されている。
原論文では有望な結果を示したが、著者のコードによるテストでは、提案された浄化アプローチのいくつかの制限が示されていた。
論文 参考訳(メタデータ) (2023-12-12T20:52:27Z) - WarpDiffusion: Efficient Diffusion Model for High-Fidelity Virtual
Try-on [81.15988741258683]
画像ベースの仮想トライオン(VITON)は、ホップ内の衣服イメージを対象人物に転送することを目的としている。
現在の方法では、衣服と肌の境界付近の合成品質や、ねじれた衣服のしわや影のような現実的な効果を見落としていることが多い。
本稿では,新しい情報的・局所的な特徴的注意機構を通じてワーピングと拡散に基づくパラダイムを橋渡しするワープ拡散を提案する。
論文 参考訳(メタデータ) (2023-12-06T18:34:32Z) - DiffProtect: Generate Adversarial Examples with Diffusion Models for
Facial Privacy Protection [64.77548539959501]
DiffProtectは最先端の方法よりも自然に見える暗号化画像を生成する。
例えば、CelebA-HQとFFHQのデータセットで24.5%と25.1%の絶対的な改善が達成されている。
論文 参考訳(メタデータ) (2023-05-23T02:45:49Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
本研究では,拡散モデルに対するメンバシップ推論攻撃の系統的解析を開発し,各攻撃シナリオに適した新しい攻撃手法を提案する。
提案手法は容易に入手可能な量を利用して,現実的なシナリオにおいてほぼ完全な攻撃性能 (>0.9 AUCROC) を達成することができる。
論文 参考訳(メタデータ) (2023-02-15T17:37:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。