Reinforcement Learning with Quasi-Hyperbolic Discounting
- URL: http://arxiv.org/abs/2409.10583v1
- Date: Mon, 16 Sep 2024 06:00:42 GMT
- Title: Reinforcement Learning with Quasi-Hyperbolic Discounting
- Authors: S. R. Eshwar, Mayank Motwani, Nibedita Roy, Gugan Thoppe,
- Abstract summary: Quasi-Hyperbolic (QH) discounting is a simple alternative for modeling this bias.
Our work significantly advances the practical application of reinforcement learning.
- Score: 2.3999111269325266
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reinforcement learning has traditionally been studied with exponential discounting or the average reward setup, mainly due to their mathematical tractability. However, such frameworks fall short of accurately capturing human behavior, which has a bias towards immediate gratification. Quasi-Hyperbolic (QH) discounting is a simple alternative for modeling this bias. Unlike in traditional discounting, though, the optimal QH-policy, starting from some time $t_1,$ can be different to the one starting from $t_2.$ Hence, the future self of an agent, if it is naive or impatient, can deviate from the policy that is optimal at the start, leading to sub-optimal overall returns. To prevent this behavior, an alternative is to work with a policy anchored in a Markov Perfect Equilibrium (MPE). In this work, we propose the first model-free algorithm for finding an MPE. Using a two-timescale analysis, we show that, if our algorithm converges, then the limit must be an MPE. We also validate this claim numerically for the standard inventory system with stochastic demands. Our work significantly advances the practical application of reinforcement learning.
Related papers
- Reinforcement Learning from Human Feedback without Reward Inference: Model-Free Algorithm and Instance-Dependent Analysis [16.288866201806382]
We develop a model-free RLHF best policy identification algorithm, called $mathsfBSAD$, without explicit reward model inference.
The algorithm identifies the optimal policy directly from human preference information in a backward manner.
arXiv Detail & Related papers (2024-06-11T17:01:41Z) - Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - A Minimaximalist Approach to Reinforcement Learning from Human Feedback [49.45285664482369]
We present Self-Play Preference Optimization (SPO), an algorithm for reinforcement learning from human feedback.
Our approach is minimalist in that it does not require training a reward model nor unstable adversarial training.
We demonstrate that on a suite of continuous control tasks, we are able to learn significantly more efficiently than reward-model based approaches.
arXiv Detail & Related papers (2024-01-08T17:55:02Z) - Inverse Reinforcement Learning with the Average Reward Criterion [3.719493310637464]
We study the problem of Inverse Reinforcement Learning (IRL) with an average-reward criterion.
The goal is to recover an unknown policy and a reward function when the agent only has samples of states and actions from an experienced agent.
arXiv Detail & Related papers (2023-05-24T01:12:08Z) - ABCinML: Anticipatory Bias Correction in Machine Learning Applications [9.978142416219294]
We propose an anticipatory dynamic learning approach for correcting the algorithm to mitigate bias before it occurs.
Results from experiments over multiple real-world datasets suggest that this approach has promise for anticipatory bias correction.
arXiv Detail & Related papers (2022-06-14T16:26:10Z) - Human-in-the-loop: Provably Efficient Preference-based Reinforcement
Learning with General Function Approximation [107.54516740713969]
We study human-in-the-loop reinforcement learning (RL) with trajectory preferences.
Instead of receiving a numeric reward at each step, the agent only receives preferences over trajectory pairs from a human overseer.
We propose the first optimistic model-based algorithm for PbRL with general function approximation.
arXiv Detail & Related papers (2022-05-23T09:03:24Z) - Reinforcement Learning in Reward-Mixing MDPs [74.41782017817808]
episodic reinforcement learning in a reward-mixing Markov decision process (MDP)
cdot S2 A2)$ episodes, where $H$ is time-horizon and $S, A$ are the number of states and actions respectively.
epsilon$-optimal policy after exploring $tildeO(poly(H,epsilon-1) cdot S2 A2)$ episodes, where $H$ is time-horizon and $S, A$ are the number of states and actions respectively.
arXiv Detail & Related papers (2021-10-07T18:55:49Z) - A Generalised Inverse Reinforcement Learning Framework [24.316047317028147]
inverse Reinforcement Learning (IRL) is to estimate the unknown cost function of some MDP base on observed trajectories.
We introduce an alternative training loss that puts more weights on future states which yields a reformulation of the (maximum entropy) IRL problem.
The algorithms we devised exhibit enhanced performances (and similar tractability) than off-the-shelf ones in multiple OpenAI gym environments.
arXiv Detail & Related papers (2021-05-25T10:30:45Z) - Policy Gradient for Continuing Tasks in Non-stationary Markov Decision
Processes [112.38662246621969]
Reinforcement learning considers the problem of finding policies that maximize an expected cumulative reward in a Markov decision process with unknown transition probabilities.
We compute unbiased navigation gradients of the value function which we use as ascent directions to update the policy.
A major drawback of policy gradient-type algorithms is that they are limited to episodic tasks unless stationarity assumptions are imposed.
arXiv Detail & Related papers (2020-10-16T15:15:42Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks.
We introduce a new scoring method that casts a plausibility ranking task in a full-text format.
We show that our method provides a much more stable training phase across random restarts.
arXiv Detail & Related papers (2020-04-29T10:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.