論文の概要: LLMs as information warriors? Auditing how LLM-powered chatbots tackle disinformation about Russia's war in Ukraine
- arxiv url: http://arxiv.org/abs/2409.10697v1
- Date: Mon, 16 Sep 2024 19:54:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 18:40:30.152574
- Title: LLMs as information warriors? Auditing how LLM-powered chatbots tackle disinformation about Russia's war in Ukraine
- Title(参考訳): 情報戦士としてのLLM : LLMを利用したチャットボットがウクライナにおけるロシアの戦争に関する偽情報にどのように取り組むか
- Authors: Mykola Makhortykh, Ani Baghumyan, Victoria Vziatysheva, Maryna Sydorova, Elizaveta Kuznetsova,
- Abstract要約: 大規模言語モデル(LLM)は情報戦争に大きな影響を与える。
LLMは、さまざまな種類の情報操作を増幅し、オンラインユーザを誤解させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of large language models (LLMs) has a significant impact on information warfare. By facilitating the production of content related to disinformation and propaganda campaigns, LLMs can amplify different types of information operations and mislead online users. In our study, we empirically investigate how LLM-powered chatbots, developed by Google, Microsoft, and Perplexity, handle disinformation about Russia's war in Ukraine and whether the chatbots' ability to provide accurate information on the topic varies across languages and over time. Our findings indicate that while for some chatbots (Perplexity), there is a significant improvement in performance over time in several languages, for others (Gemini), the performance improves only in English but deteriorates in low-resource languages.
- Abstract(参考訳): 大規模言語モデル(LLM)の台頭は情報戦争に大きな影響を及ぼす。
偽情報やプロパガンダキャンペーンに関連するコンテンツの制作を容易にすることで、LLMはさまざまな種類の情報操作を増幅し、オンラインユーザを誤解させることができる。
本研究では,Google,Microsoft,Perplexityによって開発されたLLMを利用したチャットボットが,ウクライナにおけるロシアの戦争や,そのトピックに関する正確な情報を提供するチャットボットの能力が言語や時間によって異なるかどうかを実証的に検討した。
その結果,いくつかのチャットボット (Perplexity) では,いくつかの言語では時間とともにパフォーマンスが大幅に向上している(Gemini) が,その性能は英語でのみ改善されているが,低リソース言語では低下していることがわかった。
関連論文リスト
- NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews [65.35458530702442]
我々はジャーナリストのインタビューに焦点をあて、コミュニケーションの基盤と豊富なデータに富んだドメインに焦点をあてる。
我々はNPRとCNNから4万人の2人によるインフォメーションインタビューのデータセットをキュレートする。
LLMは、人間のインタビュアーよりも、認識を使い、より高いレベルの質問に目を向ける可能性がはるかに低い。
論文 参考訳(メタデータ) (2024-11-21T01:37:38Z) - Why Not Transform Chat Large Language Models to Non-English? [57.16587777261422]
非英語データの不足は、非英語大言語モデル(LLM)の開発を制限する
TransLLMは、転送問題を変換チェーン・オブ・シント(translation chain of-of- Thought)でいくつかの一般的なサブタスクに分割する。
本手法は,シングルターンデータのみを用いて,マルチターンベンチマークMT-benchにおいて,強いベースラインとChatGPTより優れる。
論文 参考訳(メタデータ) (2024-05-22T18:53:25Z) - In Generative AI we Trust: Can Chatbots Effectively Verify Political
Information? [39.58317527488534]
本稿では,2つの大規模言語モデル(LLM)ベースのチャットボットであるChatGPTとBing Chatの比較分析を行い,政治的情報の正確性を検出する。
AI監査手法を使用して、新型コロナウイルス、ロシアによるウクライナに対する攻撃、ホロコースト、気候変動、LGBTQ+関連の議論の5つのトピックについて、チャットボットが真、偽、および境界線をどう評価するかを調査する。
その結果, ベースライン精度評価タスクにおけるChatGPTの性能が向上し, 72%のケースが事前学習なしで言語平均で正しく評価された。
論文 参考訳(メタデータ) (2023-12-20T15:17:03Z) - Disinformation Capabilities of Large Language Models [0.564232659769944]
本稿では,現在世代の大言語モデル(LLM)の非情報化能力について述べる。
20個の偽情報物語を用いた10個のLDMの能力評価を行った。
LLMは、危険な偽情報の物語に一致する説得力のあるニュース記事を生成することができると結論付けている。
論文 参考訳(メタデータ) (2023-11-15T10:25:30Z) - Combating Misinformation in the Age of LLMs: Opportunities and
Challenges [21.712051537924136]
LLM(Large Language Models)の出現は、誤情報と戦う環境を再構築する大きな可能性を秘めている。
一方、LLMは、その深い世界知識と強力な推論能力のために、誤情報と戦うための有望な機会をもたらす。
一方,LLMは大規模に誤情報を生成するために容易に活用できるという点が重要な課題である。
論文 参考訳(メタデータ) (2023-11-09T00:05:27Z) - Large Language Models Help Humans Verify Truthfulness -- Except When They Are Convincingly Wrong [35.64962031447787]
大規模言語モデル(LLM)は、Web上の情報へのアクセスにますます使われています。
80人のクラウドワーカーによる実験では,事実チェックを容易にするために,言語モデルと検索エンジン(情報検索システム)を比較した。
LLMの説明を読むユーザーは、類似の精度を保ちながら、検索エンジンを使用するものよりもはるかに効率的である。
論文 参考訳(メタデータ) (2023-10-19T08:09:58Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
この問題を解決するためにCIPHER(Communicative Inter-Model Protocol Through Embedding Representation)を導入する。
自然言語から逸脱することで、CIPHERはモデルの重みを変更することなく、より広い範囲の情報を符号化する利点を提供する。
このことは、LLM間の通信における代替の"言語"としての埋め込みの優越性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-10-10T03:06:38Z) - Do Large Language Models Know about Facts? [60.501902866946]
大規模言語モデル(LLM)は、最近、さまざまな自然言語処理タスクにおいて、大幅なパフォーマンス改善を推進している。
我々は,ベンチマークPinocchioを設計し,LLM内の事実知識の範囲と範囲を評価することを目的とする。
Pinocchioには、異なるソース、タイムライン、ドメイン、リージョン、言語にまたがる20万のさまざまな事実質問が含まれている。
論文 参考訳(メタデータ) (2023-10-08T14:26:55Z) - Can LLM-Generated Misinformation Be Detected? [18.378744138365537]
大型言語モデル(LLM)は誤情報を生成するために利用することができる。
LLMが生成した誤報は、人間が書いた誤報よりも有害か?
論文 参考訳(メタデータ) (2023-09-25T00:45:07Z) - Chain-of-Dictionary Prompting Elicits Translation in Large Language Models [100.47154959254937]
大規模言語モデル(LLM)は多言語ニューラルマシン翻訳(MNMT)において驚くほど優れた性能を示した
入力単語のサブセットに対する多言語辞書の連鎖による事前知識でLLMを拡張して翻訳能力を引き出す新しい方法であるCoDを提案する。
論文 参考訳(メタデータ) (2023-05-11T05:19:47Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。