論文の概要: Tight Lower Bounds under Asymmetric High-Order Hölder Smoothness and Uniform Convexity
- arxiv url: http://arxiv.org/abs/2409.10773v1
- Date: Mon, 16 Sep 2024 23:17:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 18:30:27.623146
- Title: Tight Lower Bounds under Asymmetric High-Order Hölder Smoothness and Uniform Convexity
- Title(参考訳): 非対称高次ヘルダー平滑性と一様凸性の下での高次下界
- Authors: Site Bai, Brian Bullins,
- Abstract要約: 我々は、高次H'olderの滑らかかつ一様凸関数を最小化するオラクル複雑性に対して、厳密な下界を提供する。
解析は、一階および二階の滑らかさの下での関数の以前の下界を一様凸関数と同様に一般化する。
- 参考スコア(独自算出の注目度): 6.972653925522813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we provide tight lower bounds for the oracle complexity of minimizing high-order H\"older smooth and uniformly convex functions. Specifically, for a function whose $p^{th}$-order derivatives are H\"older continuous with degree $\nu$ and parameter $H$, and that is uniformly convex with degree $q$ and parameter $\sigma$, we focus on two asymmetric cases: (1) $q > p + \nu$, and (2) $q < p+\nu$. Given up to $p^{th}$-order oracle access, we establish worst-case oracle complexities of $\Omega\left( \left( \frac{H}{\sigma}\right)^\frac{2}{3(p+\nu)-2}\left( \frac{\sigma}{\epsilon}\right)^\frac{2(q-p-\nu)}{q(3(p+\nu)-2)}\right)$ with a truncated-Gaussian smoothed hard function in the first case and $\Omega\left(\left(\frac{H}{\sigma}\right)^\frac{2}{3(p+\nu)-2}+ \log^2\left(\frac{\sigma^{p+\nu}}{H^q}\right)^\frac{1}{p+\nu-q}\right)$ in the second case, for reaching an $\epsilon$-approximate solution in terms of the optimality gap. Our analysis generalizes previous lower bounds for functions under first- and second-order smoothness as well as those for uniformly convex functions, and furthermore our results match the corresponding upper bounds in the general setting.
- Abstract(参考訳): 本稿では,高次H\"olderの滑らかかつ一様凸関数を最小化するオラクル複雑性に対して,厳密な下界を提供する。
具体的には、$p^{th}$-次微分が次数$\nu$ とパラメータ $H$ を持つ H\ より古い連続であり、次数$q$ とパラメータ $\sigma$ を持つ一様凸である関数に対して、(1)$q > p + \nu$ と (2)$q < p+\nu$ の2つの非対称ケースに焦点を当てる。
p^{th}$-次オラクルアクセスが与えられると、$\Omega\left( \left( \frac{H}{\sigma}\right)^\frac{2}{3(p+\nu)-2}\left( \frac{\sigma}{\epsilon}\right)^\frac{2(q-p-\nu)}{q(3(p+\nu)-2)}\right)$ truncated-Gaussian smoothed hard function in the first case and $\Omega\left(\left(\frac{H}{\sigma}\right)^\frac{2}{3(p+\nu)-2+\log^2\frac{2(p+\nu)}{q(p+\nu)-2}\right)$$$$$$Omega\left(\left(\frac{H}{\sigma}\right)^\left(\frac{2}{3(p+\nu)}{q(p+\nu)}{q(p+\nu)-2\right)$ が成立する。
解析は、一階および二階の滑らかさの下での関数の以前の下界と一様凸関数の値とを一般化し、さらに、一般設定における対応する上界と一致させる。
関連論文リスト
- Complexity of Minimizing Projected-Gradient-Dominated Functions with Stochastic First-order Oracles [38.45952947660789]
本稿では,$(alpha,tau,mathcal)$-projected-dominanceプロパティの下で関数を最小化する一階法の性能限界について検討する。
論文 参考訳(メタデータ) (2024-08-03T18:34:23Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
連続有限サム最小化(continuous finite-sum minimization)と呼ばれる有限サム最小化の鍵となるツイストを提案する。
我々のアプローチは$mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$で大幅に改善されます。
また、$mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$という自然な一階法は存在しないことを証明し、この方法の第一階法がほぼ密であることを示す。
論文 参考訳(メタデータ) (2024-06-07T08:26:31Z) - Partially Unitary Learning [0.0]
ヒルベルト空間の最適写像 $IN$ of $left|psirightrangle$ と $OUT$ of $left|phirightrangle$ が提示される。
この最適化問題の大域的な最大値を求める反復アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-05-16T17:13:55Z) - On the Complexity of Finite-Sum Smooth Optimization under the
Polyak-{\L}ojasiewicz Condition [14.781921087738967]
本稿では、$min_bf xinmathbb Rd f(bf x)triangleq frac1nsum_i=1n f_i(bf x)$, ここで、$f(cdot)$はパラメータ$mu$と$f_i(cdot)_i=1n$は$L$-mean-squared smoothである。
論文 参考訳(メタデータ) (2024-02-04T17:14:53Z) - $\ell_p$-Regression in the Arbitrary Partition Model of Communication [59.89387020011663]
コーディネータモデルにおける分散$ell_p$-regression問題のランダム化通信複雑性について考察する。
p = 2$、すなわち最小二乗回帰の場合、$tildeTheta(sd2 + sd/epsilon)$ bitsの最初の最適境界を与える。
p in (1,2)$ に対して、$tildeO(sd2/epsilon + sd/mathrmpoly(epsilon)$ upper bound を得る。
論文 参考訳(メタデータ) (2023-07-11T08:51:53Z) - The First Optimal Acceleration of High-Order Methods in Smooth Convex
Optimization [88.91190483500932]
本研究では,滑らかな凸最小化問題の解法として最適高次アルゴリズムを求めるための基本的オープンな問題について検討する。
この理由は、これらのアルゴリズムが複雑なバイナリプロシージャを実行する必要があるため、最適でも実用でもないからである。
我々は、最初のアルゴリズムに$mathcalOleft(epsilon-2/(p+1)right)$pthのオーダーオーラクル複雑性を与えることで、この根本的な問題を解決する。
論文 参考訳(メタデータ) (2022-05-19T16:04:40Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
我々は、任意のSchatten-$p$ノルムの下で、低ランク近似のためのクリロフ部分空間に基づく反復法について研究する。
我々の主な成果は、$tildeO(k/sqrtepsilon)$ matrix-vector productのみを使用するアルゴリズムである。
論文 参考訳(メタデータ) (2022-02-10T16:10:41Z) - Finding Second-Order Stationary Point for Nonconvex-Strongly-Concave
Minimax Problem [16.689304539024036]
本稿では,ミニマックス問題の2階定常点を求める非同相的挙動について考察する。
高次元問題に対して、降下とチェビシェフ展開による勾配の立方体部分確率を解く2階オラクルのコスト対費用について提案する。
論文 参考訳(メタデータ) (2021-10-10T14:54:23Z) - Revisiting EXTRA for Smooth Distributed Optimization [70.65867695317633]
改良された$Oleft(left(fracLmu+frac11-sigma_2(W)right)logfrac1epsilon (1-sigma_2(W))right)$。
高速化されたEXTRAの通信複雑性は、$left(logfracLmu (1-sigma_2(W))right)$と$left(logfrac1epsilon (1。
論文 参考訳(メタデータ) (2020-02-24T08:07:08Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
有限和の有限ノイズ構造を利用して、大域オラクルモデルの下での一致する$O(n2)$-upper境界を導出する。
同様のアプローチを踏襲したSVRGの新規な適応法を提案し、これはオラクルと互換性があり、$tildeO(n2+nsqrtL/mu)log (1/epsilon)$と$O(nsqrtL/epsilon)$, for $mu>0$と$mu=0$の複雑さ境界を実現する。
論文 参考訳(メタデータ) (2020-02-09T03:39:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。