論文の概要: INCODE: Implicit Neural Conditioning with Prior Knowledge Embeddings
- arxiv url: http://arxiv.org/abs/2310.18846v1
- Date: Sat, 28 Oct 2023 23:16:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 16:04:48.052672
- Title: INCODE: Implicit Neural Conditioning with Prior Knowledge Embeddings
- Title(参考訳): INCODE: 事前知識埋め込みによる暗黙のニューラルコンディショニング
- Authors: Amirhossein Kazerouni, Reza Azad, Alireza Hosseini, Dorit Merhof, Ulas
Bagci
- Abstract要約: Inlicit Neural Representation (INR)は、複雑なデータの連続的かつ滑らかな表現を提供するためにニューラルネットワークを活用することで、信号表現に革命をもたらした。
InCODEは、深い事前知識を用いて、INRにおける正弦波ベースの活性化関数の制御を強化する新しいアプローチである。
提案手法は表現力に優れるだけでなく,音声,画像,3次元形状復元などの複雑な課題に対処する能力も拡張している。
- 参考スコア(独自算出の注目度): 4.639495398851869
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit Neural Representations (INRs) have revolutionized signal
representation by leveraging neural networks to provide continuous and smooth
representations of complex data. However, existing INRs face limitations in
capturing fine-grained details, handling noise, and adapting to diverse signal
types. To address these challenges, we introduce INCODE, a novel approach that
enhances the control of the sinusoidal-based activation function in INRs using
deep prior knowledge. INCODE comprises a harmonizer network and a composer
network, where the harmonizer network dynamically adjusts key parameters of the
activation function. Through a task-specific pre-trained model, INCODE adapts
the task-specific parameters to optimize the representation process. Our
approach not only excels in representation, but also extends its prowess to
tackle complex tasks such as audio, image, and 3D shape reconstructions, as
well as intricate challenges such as neural radiance fields (NeRFs), and
inverse problems, including denoising, super-resolution, inpainting, and CT
reconstruction. Through comprehensive experiments, INCODE demonstrates its
superiority in terms of robustness, accuracy, quality, and convergence rate,
broadening the scope of signal representation. Please visit the project's
website for details on the proposed method and access to the code.
- Abstract(参考訳): Inlicit Neural Representation (INR)は、複雑なデータの連続的かつ滑らかな表現を提供するためにニューラルネットワークを活用することで、信号表現に革命をもたらした。
しかし、既存のINRは細かな細部を捉え、ノイズを扱い、多様な信号タイプに適応する際の制限に直面している。
これらの課題に対処するために,深い事前知識を用いたINRにおける正弦波活性化関数の制御を強化する新しいアプローチであるINCODEを導入する。
INCODEは、アクティベーション機能のキーパラメータを動的に調整するハーモナイザネットワークと、作曲家ネットワークとから構成される。
タスク固有の事前訓練モデルを通じて、INCODEはタスク固有のパラメータを適用して表現プロセスを最適化する。
提案手法は表現力に優れるだけでなく,音声,画像,3次元形状再構成などの複雑な課題に対処し,ニューラルレイディアンスフィールド(NeRF)などの複雑な課題や,デノナイズ,超解像,インペインティング,CT再構成などの逆問題に対処する能力も拡張する。
包括的な実験を通じて、INCODEは信号表現の範囲を広げ、ロバスト性、精度、品質、収束率の観点からその優位性を示す。
提案するメソッドの詳細とコードへのアクセスについては、プロジェクトのwebサイトをご覧ください。
関連論文リスト
- Single-Layer Learnable Activation for Implicit Neural Representation (SL$^{2}$A-INR) [6.572456394600755]
ニューラルネットワークを利用して、座標入力を対応する属性に変換するインプシット表現(INR)は、視覚関連領域において大きな進歩をもたらした。
SL$2$A-INR を単層学習可能なアクティベーション関数として提案し,従来の ReLU ベースの有効性を推し進める。
提案手法は,画像表現,3次元形状再構成,単一画像超解像,CT再構成,新しいビューなど,多様なタスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T02:02:15Z) - Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks [4.499833362998488]
入射神経表現(INR)は、複雑な信号の連続的および分解非依存的な表現を提供するためにニューラルネットワークを使用する。
提案したFKANは、第1層のフーリエ級数としてモデル化された学習可能なアクティベーション関数を用いて、タスク固有の周波数成分を効果的に制御し、学習する。
実験結果から,提案したFKANモデルは,最先端の3つのベースラインスキームよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-09-14T05:53:33Z) - Understanding Auditory Evoked Brain Signal via Physics-informed Embedding Network with Multi-Task Transformer [3.261870217889503]
マルチタスク変換器(PEMT-Net)を用いた物理インフォームド・エンベディング・ネットワークという,革新的なマルチタスク学習モデルを提案する。
PEMT-Netは物理インフォームド埋め込みとディープラーニング技術によりデコード性能を向上させる。
特定のデータセットに対する実験は、PEMT-Netがマルチタスクの聴覚信号復号における顕著な性能を示した。
論文 参考訳(メタデータ) (2024-06-04T06:53:32Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - Locality-Aware Generalizable Implicit Neural Representation [54.93702310461174]
一般化可能な暗黙的ニューラル表現(INR)は、単一の連続関数が複数のデータインスタンスを表現することを可能にする。
本稿では、変換器エンコーダと局所性を考慮したINRデコーダを組み合わせた一般化可能なINRのための新しいフレームワークを提案する。
我々のフレームワークは、従来の一般化可能なINRよりも大幅に優れており、下流タスクにおける局所性を考慮した潜在能力の有効性を検証している。
論文 参考訳(メタデータ) (2023-10-09T11:26:58Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
本稿では,近似関数の能力を大幅に向上させるVersatile Neural Processs (VNP)を提案する。
具体的には、より少ない情報的コンテキストトークンを生成するボトルネックエンコーダを導入し、高い計算コストを軽減した。
提案したVNPが1D, 2D, 3D信号を含む様々なタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-01-21T04:08:46Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Inlicit Neural Representation (INR)は、マルチ層パーセプトロンを介して連続したマルチメディアデータを符号化する。
既存の作業は、その離散化されたインスタンスの処理を通じて、そのような連続的な表現を操作する。
本稿では,INSP-Netと呼ばれる暗黙的ニューラル信号処理ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T06:29:07Z) - Towards Lightweight Controllable Audio Synthesis with Conditional
Implicit Neural Representations [10.484851004093919]
入射神経表現(英語: Implicit Neural representations、INR)は、低次元関数を近似するニューラルネットワークである。
本研究では、音声合成のための生成フレームワークの軽量バックボーンとして、CINR(Conditional Implicit Neural Representations)の可能性に光を当てた。
論文 参考訳(メタデータ) (2021-11-14T13:36:18Z) - Meta-Learning Sparse Implicit Neural Representations [69.15490627853629]
入射神経表現は、一般的な信号を表す新しい道である。
現在のアプローチは、多数の信号やデータセットに対してスケールすることが難しい。
メタ学習型スパースニューラル表現は,高密度メタ学習モデルよりもはるかに少ない損失が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T18:02:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。