Less is More: A Simple yet Effective Token Reduction Method for Efficient Multi-modal LLMs
- URL: http://arxiv.org/abs/2409.10994v3
- Date: Tue, 17 Dec 2024 02:05:27 GMT
- Title: Less is More: A Simple yet Effective Token Reduction Method for Efficient Multi-modal LLMs
- Authors: Dingjie Song, Wenjun Wang, Shunian Chen, Xidong Wang, Michael Guan, Benyou Wang,
- Abstract summary: We introduce a new approach, Token Reduction using CLIP Metric (TRIM), aimed at improving the efficiency of MLLMs without sacrificing their performance.<n>Inspired by human attention patterns in Visual Question Answering (VQA) tasks, TRIM presents a fresh perspective on the selection and reduction of image tokens.<n>The results demonstrate a significant reduction in computational overhead while maintaining a consistent level of performance.
- Score: 14.533229831531168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of Multimodal Large Language Models (MLLMs) has led to remarkable performances across various domains. However, this progress is accompanied by a substantial surge in the resource consumption of these models. We address this pressing issue by introducing a new approach, Token Reduction using CLIP Metric (TRIM), aimed at improving the efficiency of MLLMs without sacrificing their performance. Inspired by human attention patterns in Visual Question Answering (VQA) tasks, TRIM presents a fresh perspective on the selection and reduction of image tokens. The TRIM method has been extensively tested across 12 datasets, and the results demonstrate a significant reduction in computational overhead while maintaining a consistent level of performance. This research marks a critical stride in efficient MLLM development, promoting greater accessibility and sustainability of high-performing models.
Related papers
- Do We Truly Need So Many Samples? Multi-LLM Repeated Sampling Efficiently Scales Test-Time Compute [55.330813919992465]
This paper presents a simple, effective, and cost-efficient strategy to improve LLM performance by scaling test-time compute.
Our strategy builds upon the repeated-sampling-then-voting framework, with a novel twist: incorporating multiple models, even weaker ones, to leverage their complementary strengths.
arXiv Detail & Related papers (2025-04-01T13:13:43Z) - Attention Reallocation: Towards Zero-cost and Controllable Hallucination Mitigation of MLLMs [62.9348974370985]
We propose attention reallocation (AttnReal) to mitigate hallucinations with nearly zero extra cost.
Our approach is motivated by the key observations that, MLLM's unreasonable attention distribution causes features to be dominated by historical output tokens.
Based on the observations, AttnReal recycles excessive attention from output tokens and reallocates it to visual tokens, which reduces MLLM's reliance on language priors.
arXiv Detail & Related papers (2025-03-11T11:52:37Z) - Learning Free Token Reduction for Multi-Modal Large Language Models [3.4026156483879517]
Vision-Language Models (VLMs) have achieved remarkable success across a range of multimodal tasks.
However, their practical deployment is often constrained by high computational costs and prolonged inference times.
We propose a token compression paradigm that operates on both spatial and temporal dimensions.
arXiv Detail & Related papers (2025-01-29T02:52:32Z) - Visual RAG: Expanding MLLM visual knowledge without fine-tuning [5.341192792319891]
This paper introduces Visual RAG, that synergically combines the MLLMs capability to learn from the context, with a retrieval mechanism.
In this way, the resulting system is not limited to the knowledge extracted from the training data, but can be updated rapidly and easily without fine-tuning.
It greatly reduces the computational costs for improving the model image classification performance, and augments the model knowledge to new visual domains and tasks it was not trained for.
arXiv Detail & Related papers (2025-01-18T17:43:05Z) - FOLDER: Accelerating Multi-modal Large Language Models with Enhanced Performance [9.782362715017596]
We introduce FOLDER, a simple yet effective plug-and-play module designed to reduce the length of the visual token sequence.
We analyze the information loss introduced by different reduction strategies and develop FOLDER to preserve key information while removing visual redundancy.
FOLDER achieves comparable or even better performance than the original models, while dramatically reducing complexity by removing up to 70% of visual tokens.
arXiv Detail & Related papers (2025-01-05T03:28:45Z) - LLMs are Also Effective Embedding Models: An In-depth Overview [40.53941563464671]
Large language models (LLMs) have revolutionized natural language processing by achieving state-of-the-art performance across various tasks.
Recently, their effectiveness as embedding models has gained attention, marking a paradigm shift from traditional encoder-only models like ELMo and BERT to decoder-only, large-scale LLMs like GPT, LLaMA, and Mistral.
arXiv Detail & Related papers (2024-12-17T06:48:24Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
Excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation.
We propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE)
DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer.
arXiv Detail & Related papers (2024-11-29T11:24:23Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
This paper introduces a novel, model-level judge-free self-improvement framework.
Our approach employs a controlled feedback mechanism while eliminating the need for MLLMs in the verification loop.
We achieve superior precision and recall with significantly lower computational demands.
arXiv Detail & Related papers (2024-11-26T00:44:37Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See [37.7015406019386]
Multimodal Large Language Models (MLLMs) treat visual tokens from visual encoders as text tokens.
As token counts grow, the quadratic scaling of computation in LLMs introduces an efficiency bottleneck.
In this study, we investigate the redundancy in visual computation at both the parameter and computational pattern levels within LLaVA.
arXiv Detail & Related papers (2024-10-08T16:13:24Z) - Rethinking VLMs and LLMs for Image Classification [6.550471260627169]
Large Language Models (LLMs) are increasingly being merged with Visual Language Models (VLMs) to enable new capabilities.
We show that, for object and scene recognition, VLMs that do not leverage LLMs can achieve better performance than VLMs that do.
We propose a pragmatic solution: a lightweight fix involving a relatively small LLM that efficiently routes visual tasks to the most suitable model for the task.
arXiv Detail & Related papers (2024-10-03T23:40:21Z) - EchoAtt: Attend, Copy, then Adjust for More Efficient Large Language Models [29.57891007810509]
Large Language Models (LLMs) have demonstrated outstanding performance across a variety of natural language processing tasks.
We introduce EchoAtt, a novel framework aimed at optimizing transformer-based models by analyzing and leveraging the similarity of attention patterns across layers.
Our best results with TinyLLaMA-1.1B demonstrate that EchoAtt improves inference speed by 15%, training speed by 25%, and reduces the number of parameters by approximately 4%, all while improving zero-shot performance.
arXiv Detail & Related papers (2024-09-22T21:08:37Z) - EE-MLLM: A Data-Efficient and Compute-Efficient Multimodal Large Language Model [14.767055057048855]
We introduce the Data-Efficient and Compute-Efficient Multimodal Large Language Model (EE-MLLM)
EE-MLLM achieves both data and compute efficiency without introducing additional modules or learnable parameters.
Experimental results demonstrate the effectiveness of EE-MLLM across a range of benchmarks.
arXiv Detail & Related papers (2024-08-21T17:36:37Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping [49.66872823080736]
Autoregressive Large Language Models (e.g., LLaMa, GPTs) are omnipresent achieving remarkable success in language understanding and generation.
To mitigate overload incurred during generation, several early-exit and layer-dropping strategies have been proposed.
We propose FFN-SkipLLM, which is an input-adaptive feed-forward skipping strategy.
arXiv Detail & Related papers (2024-04-05T02:35:43Z) - Why Lift so Heavy? Slimming Large Language Models by Cutting Off the
Layers [2.1165011830664673]
Large Language Models (LLMs) possess outstanding capabilities in addressing various natural language processing (NLP) tasks.
The sheer size of these models poses challenges in terms of storage, training and inference due to the inclusion of billions of parameters through layer stacking.
We show that even with fewer layers, LLMs maintain similar or better performance levels, particularly in prompt-based fine-tuning for text classification tasks.
arXiv Detail & Related papers (2024-02-18T20:47:10Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [49.32669226551026]
We propose a simple yet effective training strategy MoE-Tuning for LVLMs.
MoE-LLaVA, a MoE-based sparse LVLM architecture, uniquely activates only the top-k experts through routers.
Experiments show the significant performance of MoE-LLaVA in a variety of visual understanding and object hallucination benchmarks.
arXiv Detail & Related papers (2024-01-29T08:13:40Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.