Dynamical topological phase transition in cold Rydberg quantum gases
- URL: http://arxiv.org/abs/2409.11035v1
- Date: Tue, 17 Sep 2024 09:59:36 GMT
- Title: Dynamical topological phase transition in cold Rydberg quantum gases
- Authors: Jun Zhang, Ya-Jun Wang, Bang Liu, Li-Hua Zhang, Zheng-Yuan Zhang, Shi-Yao Shao, Qing Li, Han-Chao Chen, Yu Ma, Tian-Yu Han, Qi-Feng Wang, Jia-Dou Nan, Yi-Ming Yin, Dong-Yang Zhu, Bao-Sen Shi, Dong-Sheng Ding,
- Abstract summary: We report the experimental observation of dynamical topological phase transitions in cold Rydberg atomic gases under a microwave field driving.
At the transition state, where the winding number flips, the topology of these trajectories evolves into more non-trivial structures.
- Score: 23.439762818503013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Study of phase transitions provide insights into how a many-body system behaves under different conditions, enabling us to understand the symmetry breaking, critical phenomena, and topological properties. Strong long-range interactions in highly excited Rydberg atoms create a versatile platform for exploring exotic emergent topological phases. Here, we report the experimental observation of dynamical topological phase transitions in cold Rydberg atomic gases under a microwave field driving. By measuring the system transmission curves while varying the probe intensity, we observe complex hysteresis trajectories characterized by distinct winding numbers as they cross the critical point. At the transition state, where the winding number flips, the topology of these hysteresis trajectories evolves into more non-trivial structures. The topological trajectories are shown to be robust against noise, confirming their rigidity in dynamic conditions. These findings contribute to the insights of emergence of complex dynamical topological phases in many-body systems.
Related papers
- Distributing entanglement at the quantum speed limit in Rydberg chains [49.1574468325115]
We numerically study the transport of Rydberg excitations in chains of neutral atoms.<n>We realize an effective flip-flop interaction using off-resonant driving fields.
arXiv Detail & Related papers (2025-06-24T01:26:09Z) - High-precision measurement of microwave electric field by cavity-enhanced critical behavior in a many-body Rydberg atomic system [21.082862659634273]
We show that the equivalent measurement sensitivity of the microwave electric field can be enhanced by an order of magnitude compared with that in free space.<n>The obtained sensitivity can be enhanced to 2.6 nV/cm/Hz$1/2$.
arXiv Detail & Related papers (2025-02-27T05:01:08Z) - Impact of micromotion and field-axis misalignment on the excitation of Rydberg states of ions in a Paul trap [0.0]
We develop a model describing a single trapped Rydberg ion, which we solve numerically via Floquet theory and analytically using a perturbative approach.<n>We analyze in which parameter regimes addressable and energetically isolated Rydberg lines persist, which are an important requirement for conducting coherent manipulations.
arXiv Detail & Related papers (2024-10-31T15:42:29Z) - Metrology of microwave fields based on trap-loss spectroscopy with cold Rydberg atoms [32.73124984242397]
We demonstrate a new approach for the metrology of microwave fields based on the trap-loss-spectroscopy of cold Rydberg atoms in a magneto-optical trap.
Compared to state-of-the-art sensors using room-temperature vapors, cold atoms allow longer interaction times, better isolation from the environment and a reduced Doppler effect.
arXiv Detail & Related papers (2024-04-26T14:30:18Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Observation of a symmetry-protected topological phase in external
magnetic fields [1.4515101661933258]
We report the real-space observation of a symmetry-protected topological phase with interacting nuclear spins.
We probe the interaction-induced transition between two topologically distinct phases, both of which are classified by many-body Chern numbers.
Our findings enable direct characterization of topological features of quantum many-body states through gradually decreasing the strength of the introduced external fields.
arXiv Detail & Related papers (2022-08-10T14:08:01Z) - Enhanced metrology at the critical point of a many-body Rydberg atomic
system [1.2722697496405464]
Near criticality the high sensitivity of Rydberg atoms to external MW electric fields, combined with many-body enhancement induces significant changes in the optical transmission.
For continuous optical transmission at the critical point, the Fisher information is three orders of magnitude larger than in independent particle systems.
arXiv Detail & Related papers (2022-07-25T07:32:12Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Characterizing Topological Excitations of a Long-Range Heisenberg Model
with Trapped Ions [0.0]
We propose a Floquet protocol to realize the antiferromagnetic Heisenberg model with power-law decaying interactions.
We show that this model features a quantum phase transition from a liquid to a valence bond solid that spontaneously breaks lattice translational symmetry.
We moreover introduce an interferometric protocol to characterize the topological excitations and the bulk topological invariants of the interacting many-body system.
arXiv Detail & Related papers (2020-12-16T19:00:02Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - Exploring the many-body dynamics near a conical intersection with
trapped Rydberg ions [6.431584269935996]
Conical intersections between electronic potential energy surfaces are paradigmatic for the study of non-adiabatic processes.
We demonstrate that trapped Rydberg ions are a platform to engineer conical intersections.
We study how the presence of a conical intersection affects both the nuclear and electronic dynamics.
arXiv Detail & Related papers (2020-12-03T11:08:59Z) - Evaluating the phase dynamics of coupled oscillators via time-variant
topological features [3.480626767752489]
We use a topological approach to construct the quantitative features describing the phase evolution of oscillators.
The time-variant features provide crucial insights into the evolution of phase dynamics.
We demonstrate that our method can qualitatively explain chimera states.
arXiv Detail & Related papers (2020-05-07T09:19:26Z) - Topological Phase Transitions Induced by Varying Topology and Boundaries
in the Toric Code [0.0]
We study the sensitivity of such phases of matter to the underlying topology.
We claim that these phase transitions are accompanied by broken symmetries in the excitation space.
We show that the phase transition between such steady states is effectively captured by the expectation value of the open-loop operator.
arXiv Detail & Related papers (2020-04-07T18:00:06Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.