High-precision measurement of microwave electric field by cavity-enhanced critical behavior in a many-body Rydberg atomic system
- URL: http://arxiv.org/abs/2502.19761v2
- Date: Mon, 03 Mar 2025 09:21:16 GMT
- Title: High-precision measurement of microwave electric field by cavity-enhanced critical behavior in a many-body Rydberg atomic system
- Authors: Qinxia Wang, Yukang Liang, Zhihui Wang, Shijun Guan, Pengfei Yang, Pengfei Zhang, Gang Li, Tiancai Zhang,
- Abstract summary: We show that the equivalent measurement sensitivity of the microwave electric field can be enhanced by an order of magnitude compared with that in free space.<n>The obtained sensitivity can be enhanced to 2.6 nV/cm/Hz$1/2$.
- Score: 21.082862659634273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been demonstrated that the Rydberg criticality in a many-body atomic system can enhance the measurement sensitivity of the microwave electric field by increasing the Fisher information. In our previous work, we proposed and experimentally verified that the Fisher information near the critical point can be increased by more than two orders of magnitude with the Rydberg atoms coupled with an optical cavity compared with that in free space. Here we demonstrate the precision measurement of the microwave electric field by cavity-enhanced critical behavior. We show that the equivalent measurement sensitivity of the microwave electric field can be enhanced by an order of magnitude compared with that in free space. The obtained sensitivity can be enhanced to 2.6 nV/cm/Hz$^{1/2}$.
Related papers
- Subwavelength micromachined vapor-cell based Rydberg sensing [0.0]
Rydberg atomic quantum sensing has emerged as a powerful technique for broadband, non-invasive, and ultra-sensitive electrometry.
Here, we perform Rydberg spectroscopy using a wafer-scale fabricated Pyrex-Si-Pyrex cell with mm-scale dimensions.
Results highlight the potential of micromachined vapor cells for sub-wavelength electromagnetic field measurements.
arXiv Detail & Related papers (2025-04-13T13:18:04Z) - A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)<n>The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.<n>We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Multichannel, ultra-wideband Rydberg Electrometry with an Optical Frequency Comb [39.876383980625235]
We show the use of a mid-infrared, frequency agile optical frequency comb as the coupling laser for three-photon Rydberg atom electrometry.
The generality and flexibility of this method for wideband multiplexing is anticipated to have transformative effects in the field of Rydberg electrometry.
arXiv Detail & Related papers (2024-09-09T19:22:28Z) - Continuously Expanding the Response Frequency of Rydberg Atom-Based Microwave Sensor by Using Quantum Mixer [3.821019887657395]
We extend the response frequency range by harnessing a controlled driving field in conjunction with a quantum mixer and heterodyne technology.
Our findings pave the way for Rydberg atom-based MW receivers characterized by both high sensitivity and an exceptionally broad bandwidth.
arXiv Detail & Related papers (2024-07-24T08:34:49Z) - Approaching the standard quantum limit of a Rydberg-atom microwave
electrometer [12.248913975876139]
The Rydberg electrometer has garnered considerable attention due to its exceptional sensitivity, small-size, and broad tunability.
The advanced Rydberg-atom microwave electrometer falls considerably short of the standard quantum limit by over three orders of magnitude.
Our study achieves an electric-field sensitivity of 10.0 nV/cm/Hz1/2 at a 100 Hz repetition rate, reaching a factor of 2.6 above the standard quantum limit and a minimum detectable field of 540 pV/cm.
arXiv Detail & Related papers (2023-07-28T15:26:45Z) - Enhanced metrology at the critical point of a many-body Rydberg atomic
system [1.2722697496405464]
Near criticality the high sensitivity of Rydberg atoms to external MW electric fields, combined with many-body enhancement induces significant changes in the optical transmission.
For continuous optical transmission at the critical point, the Fisher information is three orders of magnitude larger than in independent particle systems.
arXiv Detail & Related papers (2022-07-25T07:32:12Z) - Rydberg atom-based field sensing enhancement using a split-ring
resonator [50.591267188664666]
We investigate the use of a split-ring resonator incorporated with an atomic-vapor cell to improve sensitivity and the minimal detectable electric field of Rydberg atom-based sensors.
By combining EIT with a heterodyne Rydberg atom-based mixer approach, the SRR allows for the a sensitivity of 5.5$mu$V/m$sqrtrm Hz$, which is two-orders of magnitude improvement in sensitivity than when the SRR is not used.
arXiv Detail & Related papers (2022-02-18T01:44:56Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
We present the direct loss tangent measurement of a high-resist intrinsicivity (100) silicon wafer in the temperature range from 70 mK to 1 K.
The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator.
arXiv Detail & Related papers (2021-08-19T20:13:07Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - Microwave electrometry via electromagnetically induced absorption in
cold Rydberg atoms [9.897318014645432]
Direct International System of Units (SI)-traceable and self-calibrated method for measuring a microwave electric field strength based on electromagnetically induced absorption (EIA) in cold Rydberg atoms.
A narrower linewidth of cold Rydberg EIA enables us to realize a direct SI-traceable microwave-electric-field measurement as small as $sim$100.
arXiv Detail & Related papers (2020-02-03T16:04:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.