論文の概要: MAISI: Medical AI for Synthetic Imaging
- arxiv url: http://arxiv.org/abs/2409.11169v1
- Date: Fri, 13 Sep 2024 18:15:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 16:45:13.781016
- Title: MAISI: Medical AI for Synthetic Imaging
- Title(参考訳): MAISI:シンセティックイメージングのための医療用AI
- Authors: Pengfei Guo, Can Zhao, Dong Yang, Ziyue Xu, Vishwesh Nath, Yucheng Tang, Benjamin Simon, Mason Belue, Stephanie Harmon, Baris Turkbey, Daguang Xu,
- Abstract要約: 医用画像解析は、データの不足、高アノテーションコスト、プライバシー上の懸念といった課題に直面している。
本稿では,合成画像のための医用AI(MAISI)を導入し,CT画像を生成する。
- 参考スコア(独自算出の注目度): 16.687814167558326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical imaging analysis faces challenges such as data scarcity, high annotation costs, and privacy concerns. This paper introduces the Medical AI for Synthetic Imaging (MAISI), an innovative approach using the diffusion model to generate synthetic 3D computed tomography (CT) images to address those challenges. MAISI leverages the foundation volume compression network and the latent diffusion model to produce high-resolution CT images (up to a landmark volume dimension of 512 x 512 x 768 ) with flexible volume dimensions and voxel spacing. By incorporating ControlNet, MAISI can process organ segmentation, including 127 anatomical structures, as additional conditions and enables the generation of accurately annotated synthetic images that can be used for various downstream tasks. Our experiment results show that MAISI's capabilities in generating realistic, anatomically accurate images for diverse regions and conditions reveal its promising potential to mitigate challenges using synthetic data.
- Abstract(参考訳): 医用画像解析は、データの不足、高アノテーションコスト、プライバシー上の懸念といった課題に直面している。
本稿では,これらの課題に対処するために,拡散モデルを用いて合成3次元CT画像を生成する革新的な手法であるMAISIについて紹介する。
MAISIは基礎ボリューム圧縮ネットワークと潜在拡散モデルを利用して、フレキシブルボリューム次元とボクセル間隔を持つ高解像度CT画像(ランドマークボリューム次元512 x 512 x 768 まで)を生成する。
ControlNetを組み込むことで、MAISIは127の解剖学的構造を含む臓器のセグメンテーションを追加条件として処理し、さまざまな下流タスクに使用できる正確な注釈付き合成画像を生成することができる。
実験の結果,MAISIの様々な領域や条件に対して,現実的で解剖学的に正確な画像を生成する能力は,合成データによる課題の軽減に有望な可能性を示唆している。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Memory-efficient High-resolution OCT Volume Synthesis with Cascaded Amortized Latent Diffusion Models [48.87160158792048]
本稿では,高分解能CTボリュームをメモリ効率よく合成できるCA-LDM(Cascaded amortized Latent diffusion model)を提案する。
公開高解像度OCTデータセットを用いた実験により、我々の合成データは、既存の手法の能力を超越した、現実的な高解像度かつグローバルな特徴を持つことが示された。
論文 参考訳(メタデータ) (2024-05-26T10:58:22Z) - WDM: 3D Wavelet Diffusion Models for High-Resolution Medical Image Synthesis [1.647759094903376]
本研究はウェーブレット画像に拡散モデルを適用するウェーブレットベースの医用画像合成フレームワークであるWDMを提案する。
BraTS と LIDC-IDRI の非条件画像生成実験の結果,FID (State-of-the-art image fidelity) とMS-SSIM (Simified diversity) のスコアが得られた。
提案手法は,高画質画像を256倍256倍256$の解像度で生成できる唯一の手法である。
論文 参考訳(メタデータ) (2024-02-29T11:11:05Z) - Retinal OCT Synthesis with Denoising Diffusion Probabilistic Models for
Layer Segmentation [2.4113205575263708]
本稿では,拡散確率モデル(DDPM)を用いて網膜光コヒーレンス断層撮影(OCT)画像を自動的に生成する画像合成手法を提案する。
階層分割の精度を一貫して改善し,様々なニューラルネットワークを用いて検証する。
これらの結果から,網膜CT画像の手動アノテーションの必要性が軽減される可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-09T16:09:24Z) - A 3D generative model of pathological multi-modal MR images and
segmentations [3.4806591877889375]
脳MRIと関連セグメンテーションのための3次元生成モデルである脳SPADE3Dを提案する。
提案した共同画像分割生成モデルを用いて,高忠実度合成画像と関連するセグメンテーションを生成する。
データに予期せぬ病理が存在する場合、セグメント化モデルの性能に関する問題をモデルが緩和する方法を実証する。
論文 参考訳(メタデータ) (2023-11-08T09:36:37Z) - EMIT-Diff: Enhancing Medical Image Segmentation via Text-Guided
Diffusion Model [4.057796755073023]
EMIT-Diffと呼ばれる医用画像合成のための制御可能な拡散モデルを開発した。
近年の拡散確率モデルを利用して、現実的で多様な合成医用画像データを生成する。
提案手法では, 合成試料が医療上の制約に適合することを確実にする。
論文 参考訳(メタデータ) (2023-10-19T16:18:02Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Mask-conditioned latent diffusion for generating gastrointestinal polyp
images [2.027538200191349]
本研究では,与えられたセグメンテーションマスクに条件付き合成GIポリプ画像を生成する条件付きDPMフレームワークを提案する。
本システムでは,ポリプの接地真実マスクを用いて,無限個の高忠実度合成ポリプ画像を生成することができる。
以上の結果から,実データと合成データの両方からなるトレーニングデータから,DeepLabv3+から0.7751の最適マイクロイモージョンIOUが得られた。
論文 参考訳(メタデータ) (2023-04-11T14:11:17Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。