Challenging Excited States from Adaptive Quantum Eigensolvers: Subspace Expansions vs. State-Averaged Strategies
- URL: http://arxiv.org/abs/2409.11210v1
- Date: Tue, 17 Sep 2024 14:03:27 GMT
- Title: Challenging Excited States from Adaptive Quantum Eigensolvers: Subspace Expansions vs. State-Averaged Strategies
- Authors: Harper R. Grimsley, Francesco A. Evangelista,
- Abstract summary: ADAPT-VQE is a single-reference approach for obtaining ground states of molecules.
MORE-ADAPT-VQE is able to accurately describe both avoided crossings and crossings between states of different symmetries.
These improvements suggest a promising direction toward the use of quantum computers for difficult excited state problems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prediction of electronic structure for strongly correlated molecules represents a promising application for near-term quantum computers. Significant attention has been paid to ground state wavefunctions, but excited states of molecules are relatively unexplored. In this work, we consider the ADAPT-VQE algorithm, a single-reference approach for obtaining ground states, and its state-averaged generalization for computing multiple states at once. We demonstrate for both rectangular and linear H$_4$, as well as for BeH$_2$, that this approach, which we call MORE-ADAPT-VQE, can make better use of small excitation manifolds than an analagous method based on a single-reference ADAPT-VQE calculation, q-sc-EOM. In particular, MORE-ADAPT-VQE is able to accurately describe both avoided crossings and crossings between states of different symmetries. In addition to more accurate excited state energies, MORE-ADAPT-VQE can recover accurate transition dipole moments in situations where traditional ADAPT-VQE and q-sc-EOM struggle. These improvements suggest a promising direction toward the use of quantum computers for difficult excited state problems.
Related papers
- Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations [0.0]
We introduce the em subspace search quantum imaginary time evolution (SSQITE) method, which calculates excited states using quantum devices.
With its robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across a wide range of applications.
arXiv Detail & Related papers (2024-07-15T19:14:45Z) - Many-Body Excited States with a Contracted Quantum Eigensolver [0.0]
We develop an excited state approach based on the contracted quantum eigensolver (ES-CQE)
We show the ES-CQE near-exact accuracy across the majority of states, covering regions of strong and weak electron correlation.
arXiv Detail & Related papers (2023-05-16T17:53:07Z) - Quantum Eigenvector Continuation for Chemistry Applications [57.70351255180495]
We show that a significant amount of (quantum) computational effort can be saved by making use of already calculated ground states.
In all cases, we show that the PES can be captured using relatively few basis states.
arXiv Detail & Related papers (2023-04-28T19:22:58Z) - Orbital Expansion Variational Quantum Eigensolver: Enabling Efficient
Simulation of Molecules with Shallow Quantum Circuit [0.5541644538483947]
Variational Quantum Eigensolver (VQE) is a promising method to study ground state properties in quantum chemistry, materials science, and condensed physics.
Here, we propose an Orbital Expansion VQE(OE-VQE) framework to construct an efficient convergence path.
The path starts from a highly correlated compact active space and rapidly expands and converges to the ground state, enabling ground states with much shallower quantum circuits.
arXiv Detail & Related papers (2022-10-13T10:47:01Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - A state-averaged orbital-optimized hybrid quantum-classical algorithm
for a democratic description of ground and excited states [0.0]
In the Noisy Intermediate-Scale Quantum (NISQ) era, solving the electronic structure problem from chemistry is considered as the "killer application"
We introduce a method called "State-Averaged Orbital-d Variationalsolver" (SA-OO-VQE) which combines two algorithms.
We show that merging both algorithms fulfil the necessary condition to describe the molecule's conical intersection.
arXiv Detail & Related papers (2020-09-23T23:27:51Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - Excited-State Adiabatic Quantum Computation Started with Vacuum States [0.0]
We propose the excited-state AQC started with the most stable state, i.e., the vacuum state.
This counterintuitive approach becomes possible by using a driven quantum system.
By numerical simulations, we show that some hard instances, where standard ground-state AQC with KPOs fails to find their optimal solutions, can be solved by the present approach.
arXiv Detail & Related papers (2020-05-15T12:59:28Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.