論文の概要: Cost-informed dimensionality reduction for structural digital twin technologies
- arxiv url: http://arxiv.org/abs/2409.11236v1
- Date: Tue, 17 Sep 2024 14:37:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 16:25:29.023453
- Title: Cost-informed dimensionality reduction for structural digital twin technologies
- Title(参考訳): 構造型ディジタルツイン技術におけるコストインフォームド次元性低減
- Authors: Aidan J. Hughes, Keith Worden, Nikolaos Dervilis, Timothy J. Rogers,
- Abstract要約: 本稿では,構造資産管理における次元削減に関する決定論的アプローチを定式化する。
識別情報が失われる可能性があるため、誤分類コストを最小限に抑えることが目的である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classification models are a key component of structural digital twin technologies used for supporting asset management decision-making. An important consideration when developing classification models is the dimensionality of the input, or feature space, used. If the dimensionality is too high, then the `curse of dimensionality' may rear its ugly head; manifesting as reduced predictive performance. To mitigate such effects, practitioners can employ dimensionality reduction techniques. The current paper formulates a decision-theoretic approach to dimensionality reduction for structural asset management. In this approach, the aim is to keep incurred misclassification costs to a minimum, as the dimensionality is reduced and discriminatory information may be lost. This formulation is constructed as an eigenvalue problem, with separabilities between classes weighted according to the cost of misclassifying them when considered in the context of a decision process. The approach is demonstrated using a synthetic case study.
- Abstract(参考訳): 分類モデルは、資産管理決定を支援するために使用される構造的デジタルツイン技術の重要な構成要素である。
分類モデルを開発する際の重要な考慮事項は入力の次元性(つまり特徴空間)である。
次元が高すぎる場合、'次元の帰結'は、その粗い頭部を後退させ、予測性能を低下させる。
このような効果を緩和するために、実践者は次元還元技術を用いることができる。
本論文は, 構造資産管理のための次元還元に関する決定論的アプローチを定式化したものである。
このアプローチでは、次元が減少し識別情報が失われる可能性があるため、帰属的誤分類コストを最小限に抑えることが目的である。
この定式化は固有値問題として構築され、決定過程の文脈で考慮すると、分類ミスのコストに応じて重み付けされたクラス間の分離性を持つ。
このアプローチは、合成ケーススタディを用いて実証される。
関連論文リスト
- Golden Ratio-Based Sufficient Dimension Reduction [6.184279198087624]
本稿では,ニューラルネットワークを用いた十分次元削減手法を提案する。
構造次元を効果的に特定し、中心空間をうまく推定する。
これは、バロンクラスの関数に対するニューラルネットワークの近似能力の利点を生かし、計算コストの削減につながる。
論文 参考訳(メタデータ) (2024-10-25T04:15:15Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
提案手法は,ディープラーニングと数値最適化アルゴリズムを統合し,行列構造を推論し,数値最適化を導出する。
大規模合成データセットを用いて,提案手法の優れた一般化性能を実証するために実験を行った。
論文 参考訳(メタデータ) (2023-10-09T14:30:06Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z) - An evaluation framework for dimensionality reduction through sectional
curvature [59.40521061783166]
本研究は,非教師付き次元減少性能指標を初めて導入することを目的としている。
その実現可能性をテストするために、この測定基準は最もよく使われる次元削減アルゴリズムの性能を評価するために用いられている。
新しいパラメータ化問題インスタンスジェネレータが関数ジェネレータの形式で構築されている。
論文 参考訳(メタデータ) (2023-03-17T11:59:33Z) - DimenFix: A novel meta-dimensionality reduction method for feature
preservation [64.0476282000118]
そこで我々は, グラデーション・ディフレッシブなプロセスを含む任意の基本次元還元法で操作できる新しいメタメソド, DimenFixを提案する。
DimenFixは、ディメンタリティの削減と見なされるさまざまな機能の重要性をユーザが定義できるようにすることで、与えられたデータセットを視覚化し、理解する新たな可能性を生み出します。
論文 参考訳(メタデータ) (2022-11-30T05:35:22Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
本稿ではメタラーニングと逆学習の技法を活用した自己破壊モデルの学習アルゴリズムを提案する。
小規模な実験では、MLACは、BERTスタイルのモデルが性別識別を行うために再目的化されることをほとんど防ぐことができることを示す。
論文 参考訳(メタデータ) (2022-11-27T21:43:45Z) - Rethinking Cost-sensitive Classification in Deep Learning via
Adversarial Data Augmentation [4.479834103607382]
コストに敏感な分類は、誤分類エラーがコストで大きく異なるアプリケーションにおいて重要である。
本稿では,過度パラメータ化モデルにコスト感受性を持たせるために,コスト依存型逆データ拡張フレームワークを提案する。
提案手法は,全体のコストを効果的に最小化し,臨界誤差を低減するとともに,全体的な精度で同等の性能を達成できる。
論文 参考訳(メタデータ) (2022-08-24T19:00:30Z) - Cost-effective Variational Active Entity Resolution [4.238343046459798]
我々は,人間の関与コストを削減するために,ディープオートエンコーダが付与するロバスト性に基づくエンティティ解決手法を考案した。
具体的には、教師なし表現学習を行うことにより、ディープ・エンティティ・リゾリューション・モデルのトレーニングコストを削減する。
最後に,ディープ・オートエンコーダの利用によって与えられる特性に基づくアクティブ・ラーニング・アプローチにより,トレーニングデータのラベル付けコストを削減した。
論文 参考訳(メタデータ) (2020-11-20T13:47:11Z) - The Dilemma Between Data Transformations and Adversarial Robustness for
Time Series Application Systems [1.2056495277232115]
アドリシャルな例、あるいは攻撃者が生成したほぼ区別できない入力は、機械学習の精度を著しく低下させる。
この研究は、データ変換が、リカレントニューラルネットワーク上で効果的な敵サンプルを作成する敵の能力にどのように影響するかを考察する。
データ変換技術は、データセットの本質的な次元を近似した場合のみ、逆例に対する脆弱性を低減する。
論文 参考訳(メタデータ) (2020-06-18T22:43:37Z) - Dimensionality Reduction for Sentiment Classification: Evolving for the
Most Prominent and Separable Features [4.156782836736784]
感情分類において、膨大なテキストデータ、その膨大な次元、および固有のノイズは、機械学習分類器が高レベルで複雑な抽象化を抽出することが極めて困難である。
既存の次元削減技術では、コンポーネントの数を手動で設定する必要があるため、最も顕著な特徴が失われる。
我々は,2次元化技術であるSentiment Term Presence Count(SentiTPC)とSentiment Term Presence Ratio(SentiTPR)からなる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-01T09:46:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。