論文の概要: Normalization in Proportional Feature Spaces
- arxiv url: http://arxiv.org/abs/2409.11389v1
- Date: Tue, 17 Sep 2024 17:46:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 15:25:38.481529
- Title: Normalization in Proportional Feature Spaces
- Title(参考訳): 比例的特徴空間の正規化
- Authors: Alexandre Benatti, Luciano da F. Costa,
- Abstract要約: データ表現、特徴付け、可視化、分析、比較、分類、モデリングにおいて、正規化は重要な中心的な役割を果たす。
適切な正規化手法の選択は、関連する特徴の種類と特徴を考慮する必要がある。
- 参考スコア(独自算出の注目度): 49.48516314472825
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The subject of features normalization plays an important central role in data representation, characterization, visualization, analysis, comparison, classification, and modeling, as it can substantially influence and be influenced by all of these activities and respective aspects. The selection of an appropriate normalization method needs to take into account the type and characteristics of the involved features, the methods to be used subsequently for the just mentioned data processing, as well as the specific questions being considered. After briefly considering how normalization constitutes one of the many interrelated parts typically involved in data analysis and modeling, the present work addressed the important issue of feature normalization from the perspective of uniform and proportional (right skewed) features and comparison operations. More general right skewed features are also considered in an approximated manner. Several concepts, properties, and results are described and discussed, including the description of a duality relationship between uniform and proportional feature spaces and respective comparisons, specifying conditions for consistency between comparisons in each of the two domains. Two normalization possibilities based on non-centralized dispersion of features are also presented, and also described is a modified version of the Jaccard similarity index which incorporates intrinsically normalization. Preliminary experiments are presented in order to illustrate the developed concepts and methods.
- Abstract(参考訳): 特徴正規化の主題は、データ表現、キャラクタリゼーション、可視化、分析、比較、分類、モデリングにおいて重要な中心的な役割を果たす。
適切な正規化手法の選択は、関連する特徴の種類や特徴、その後に先述のデータ処理に使用する方法、検討中の特定の問題を考慮する必要がある。
データ解析とモデリングに典型的に関係する多くの部分の1つとして正規化がどのように構成されるかを簡単に検討した後、一様かつ比例的な特徴と比較操作の観点から特徴正規化の重要な課題に対処した。
より一般的な右スキュート特徴も近似的に考慮される。
均一な特徴空間と比例的な特徴空間の双対関係と、それぞれの比較の整合性を記述することを含む、いくつかの概念、性質、結果について述べ、議論する。
特徴の非分散に基づく2つの正規化可能性を示すとともに、本質的な正規化を含むジャカード類似度指数の修正版についても述べる。
先進的な概念と手法を説明するために,予備実験を行った。
関連論文リスト
- Evaluating Representational Similarity Measures from the Lens of Functional Correspondence [1.7811840395202345]
神経科学と人工知能(AI)はどちらも、高次元のニューラルネットワークの解釈という課題に直面している。
表象比較が広く使われているにもかかわらず、重要な疑問が残る: どの指標がこれらの比較に最も適しているのか?
論文 参考訳(メタデータ) (2024-11-21T23:53:58Z) - Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
相対表現はゼロショットモデルの縫合に対する確立されたアプローチである。
相対変換において正規化手順を導入し、非等方的再スケーリングや置換に不変となる。
第二に、クラス内のクラスタリングを促進するトポロジカル正規化損失である、微調整された相対表現におけるトポロジカルデシフィケーションの展開を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:09:22Z) - Supervised Pattern Recognition Involving Skewed Feature Densities [49.48516314472825]
一致する類似度指数に基づくユークリッド距離の分類ポテンシャルと相似性指数を比較する。
隣接する2つの群の密度間の交点を分類する精度を考慮する。
論文 参考訳(メタデータ) (2024-09-02T12:45:18Z) - Relational Local Explanations [11.679389861042]
我々は,入力変数間の関係解析に基づく,新しいモデルに依存しない,置換に基づく特徴帰属アルゴリズムを開発した。
機械学習のモデル決定とデータについて、より広範な洞察を得ることができます。
論文 参考訳(メタデータ) (2022-12-23T14:46:23Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
一般化は、見えないデータを分類するモデルの能力をキャプチャする。
不変性はデータの変換におけるモデル予測の一貫性を測定する。
データセット中心の視点から、あるモデルの精度と不変性は異なるテストセット上で線形に相関している。
論文 参考訳(メタデータ) (2022-07-14T17:08:25Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - The role of feature space in atomistic learning [62.997667081978825]
物理的にインスパイアされた記述子は、原子論シミュレーションへの機械学習技術の応用において重要な役割を果たしている。
異なる記述子のセットを比較するためのフレームワークを導入し、メトリクスとカーネルを使ってそれらを変換するさまざまな方法を紹介します。
原子密度のn-体相関から構築した表現を比較し,低次特徴の利用に伴う情報損失を定量的に評価した。
論文 参考訳(メタデータ) (2020-09-06T14:12:09Z) - TCMI: a non-parametric mutual-dependence estimator for multivariate
continuous distributions [0.0]
総累積相互情報(TCMI)は相互依存の関連性の尺度である。
TCMIは、特徴集合の比較とランキングを容易にする非パラメトリックで堅牢で決定論的尺度である。
論文 参考訳(メタデータ) (2020-01-30T08:42:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。