論文の概要: Supervised Pattern Recognition Involving Skewed Feature Densities
- arxiv url: http://arxiv.org/abs/2409.01213v1
- Date: Mon, 2 Sep 2024 12:45:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 06:47:21.066661
- Title: Supervised Pattern Recognition Involving Skewed Feature Densities
- Title(参考訳): スキュー特徴密度を考慮した教師付きパターン認識
- Authors: Alexandre Benatti, Luciano da F. Costa,
- Abstract要約: 一致する類似度指数に基づくユークリッド距離の分類ポテンシャルと相似性指数を比較する。
隣接する2つの群の密度間の交点を分類する精度を考慮する。
- 参考スコア(独自算出の注目度): 49.48516314472825
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Pattern recognition constitutes a particularly important task underlying a great deal of scientific and technologica activities. At the same time, pattern recognition involves several challenges, including the choice of features to represent the data elements, as well as possible respective transformations. In the present work, the classification potential of the Euclidean distance and a dissimilarity index based on the coincidence similarity index are compared by using the k-neighbors supervised classification method respectively to features resulting from several types of transformations of one- and two-dimensional symmetric densities. Given two groups characterized by respective densities without or with overlap, different types of respective transformations are obtained and employed to quantitatively evaluate the performance of k-neighbors methodologies based on the Euclidean distance an coincidence similarity index. More specifically, the accuracy of classifying the intersection point between the densities of two adjacent groups is taken into account for the comparison. Several interesting results are described and discussed, including the enhanced potential of the dissimilarity index for classifying datasets with right skewed feature densities, as well as the identification that the sharpness of the comparison between data elements can be independent of the respective supervised classification performance.
- Abstract(参考訳): パターン認識は、多くの科学および技術活動の基礎となる特に重要な課題である。
同時に、パターン認識には、データ要素を表現する機能の選択や、可能な各変換など、いくつかの課題が含まれている。
本研究は, 類似度指数に基づくユークリッド距離の分類ポテンシャルと相似類似度指数に基づく相似性指数を, k-neighbors による分類法を用いて比較した。
重なりのない, あるいは重複しない, それぞれの密度を特徴とする2つの群が与えられた場合, ユークリッド距離に基づくk近傍法の性能を類似度指標として定量的に評価するために, 異なるタイプの変換が得られた。
より具体的には、隣り合う2つの群の密度の間の交点を分類する精度が比較に考慮される。
また,データ要素間の比較のシャープさが,各教師付き分類性能とは無関係であることが確認された。
関連論文リスト
- Evaluating Representational Similarity Measures from the Lens of Functional Correspondence [1.7811840395202345]
神経科学と人工知能(AI)はどちらも、高次元のニューラルネットワークの解釈という課題に直面している。
表象比較が広く使われているにもかかわらず、重要な疑問が残る: どの指標がこれらの比較に最も適しているのか?
論文 参考訳(メタデータ) (2024-11-21T23:53:58Z) - Measuring similarity between embedding spaces using induced neighborhood graphs [10.056989400384772]
本稿では,ペアの項目表現の類似性を評価するための指標を提案する。
この結果から,類似度とゼロショット分類タスクの精度が類似度と相関していることが示唆された。
論文 参考訳(メタデータ) (2024-11-13T15:22:33Z) - Normalization in Proportional Feature Spaces [49.48516314472825]
データ表現、特徴付け、可視化、分析、比較、分類、モデリングにおいて、正規化は重要な中心的な役割を果たす。
適切な正規化手法の選択は、関連する特徴の種類と特徴を考慮する必要がある。
論文 参考訳(メタデータ) (2024-09-17T17:46:27Z) - Canonical Variates in Wasserstein Metric Space [16.668946904062032]
We use the Wasserstein metric to measure distances between distributions, then used by distance-based classification algorithm。
我々の研究の中心は、分類精度を高めるために、ワッサーシュタイン計量空間内の次元の減少である。
本稿では,クラス間変動からクラス内変動への商として定義されたフィッシャー比を最大化する原理に基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-24T17:59:21Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - DiSC: Differential Spectral Clustering of Features [7.111650988432555]
条件を区別する特徴群を検出するためのデータ駆動型手法を開発した。
条件固有の特徴グラフ間で接続性が大きく異なるノードのサブセットを計算する。
論文 参考訳(メタデータ) (2022-11-10T03:32:17Z) - Multivariate feature ranking of gene expression data [62.997667081978825]
ペアワイズ相関とペアワイズ整合性に基づく2つの新しい多変量特徴ランキング手法を提案する。
提案手法は, クラスタリング変動, チ・スクエアド, 相関, 情報ゲイン, ReliefF および Significance の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-03T17:19:53Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - Classification with Nearest Disjoint Centroids [6.332832782461923]
最寄りのセントロイドに基づく新しい分類法を開発し,これを最寄りのディジョイント・セントロイド分類器と呼ぶ。
本手法は次の2つの側面において最寄りのセントロイド分類器と異なる: (1) 中心ロイドはすべての特徴の代わりに特徴の解離部分集合に基づいて定義され、(2) 距離はユークリッドノルムの代わりに次元正規化ノルムによって誘導される。
論文 参考訳(メタデータ) (2021-09-21T21:16:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。