論文の概要: Jailbroken: How Does LLM Safety Training Fail?
- arxiv url: http://arxiv.org/abs/2307.02483v1
- Date: Wed, 5 Jul 2023 17:58:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 12:37:55.386286
- Title: Jailbroken: How Does LLM Safety Training Fail?
- Title(参考訳): Jailbroken: LLMの安全トレーニングはどのように失敗するのか?
- Authors: Alexander Wei and Nika Haghtalab and Jacob Steinhardt
- Abstract要約: ChatGPTの初期リリースに対する"jailbreak"攻撃は、望ましくない振る舞いを引き起こす。
このような攻撃がなぜ成功し、どのように発生できるかを考察する。
障害モードを利用した新たな攻撃は、安全でない要求の収集において、すべてのプロンプトで成功します。
- 参考スコア(独自算出の注目度): 92.8748773632051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models trained for safety and harmlessness remain susceptible
to adversarial misuse, as evidenced by the prevalence of "jailbreak" attacks on
early releases of ChatGPT that elicit undesired behavior. Going beyond
recognition of the issue, we investigate why such attacks succeed and how they
can be created. We hypothesize two failure modes of safety training: competing
objectives and mismatched generalization. Competing objectives arise when a
model's capabilities and safety goals conflict, while mismatched generalization
occurs when safety training fails to generalize to a domain for which
capabilities exist. We use these failure modes to guide jailbreak design and
then evaluate state-of-the-art models, including OpenAI's GPT-4 and Anthropic's
Claude v1.3, against both existing and newly designed attacks. We find that
vulnerabilities persist despite the extensive red-teaming and safety-training
efforts behind these models. Notably, new attacks utilizing our failure modes
succeed on every prompt in a collection of unsafe requests from the models'
red-teaming evaluation sets and outperform existing ad hoc jailbreaks. Our
analysis emphasizes the need for safety-capability parity -- that safety
mechanisms should be as sophisticated as the underlying model -- and argues
against the idea that scaling alone can resolve these safety failure modes.
- Abstract(参考訳): 安全と無害のために訓練された大規模な言語モデルは、ChatGPTの初期リリースに対する「ジェイルブレイク」攻撃の頻度から証明されたように、敵の誤用の影響を受けやすいままである。
問題の認識を超えて、このような攻撃がなぜ成功し、どのように発生できるかを調査する。
我々は,安全訓練における2つの障害モードを仮定した。
競合する目的は、モデルの能力と安全性の目標が相反するときに生じるが、安全トレーニングが機能のある領域に一般化できない場合に、ミスマッチした一般化が発生する。
我々はこれらの障害モードを使用して、jailbreakの設計をガイドし、OpenAIのGPT-4やAnthropicのClaude v1.3といった最先端のモデルを評価する。
これらのモデルの背後にある広範囲な赤チームと安全トレーニングの努力にもかかわらず、脆弱性は持続する。
特に、フェールモードを利用した新たな攻撃は、モデルのリピート評価セットからの安全でない要求の収集において、すべてのプロンプトで成功し、既存のアドホックジェイルブレイクを上回っます。
私たちの分析では、安全性と能力の同等性(安全性メカニズムは基盤となるモデルと同じくらい高度であること)の必要性を強調し、スケーリングだけでこれらの安全障害モードを解決できるという考えに反対しています。
関連論文リスト
- Stealthy Jailbreak Attacks on Large Language Models via Benign Data Mirroring [47.40698758003993]
そこで本研究では,ターゲットブラックボックスモデルのミラーモデルを良質なデータ蒸留により局所的に訓練することにより,悪意あるプロンプト構築を誘導するトランスファー攻撃法を提案する。
提案手法は最大攻撃成功率92%, バランス値80%を達成し, GPT-3.5 Turboに対して平均1.5のジェイルブレイククエリが検出された。
論文 参考訳(メタデータ) (2024-10-28T14:48:05Z) - You Know What I'm Saying: Jailbreak Attack via Implicit Reference [22.520950422702757]
本研究は、以前見過ごされた脆弱性を特定し、Implicit Reference (AIR) による攻撃(Attack)と呼ぶ。
AIRは悪意のある目的を許容可能な目的に分解し、コンテキスト内の暗黙の参照を通してそれらをリンクする。
我々の実験は、AIRが最先端のLLMに対して有効であることを示し、ほとんどのモデルで90%を超える攻撃成功率(ASR)を達成した。
論文 参考訳(メタデータ) (2024-10-04T18:42:57Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
本稿では,大規模言語モデル(LLM)における脱獄予防の重要性を論じる。
我々は,既存の最先端ガードレールの限界を超えるよう設計された,新しいガードレールアーキテクチャであるMoJEを紹介する。
MoJEは、モデル推論中に最小限の計算オーバーヘッドを維持しながら、ジェイルブレイク攻撃の検出に優れる。
論文 参考訳(メタデータ) (2024-09-26T10:12:19Z) - PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach [25.31933913962953]
大規模言語モデル(LLM)が広く普及し、セキュリティに対する懸念が高まっている。
そこで我々は,迷路から逃れるネズミのゲームに触発された新しいブラックボックスジェイルブレイク手法PathSeekerを紹介した。
提案手法は,13の商用およびオープンソース LLM を対象としたテストにおいて,最先端の攻撃技術として5つの性能を発揮した。
論文 参考訳(メタデータ) (2024-09-21T15:36:26Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models [66.34505141027624]
我々は、WildTeamingを紹介した。これは自動LLM安全リチームフレームワークで、Wild-Chatbotインタラクションをマイニングし、新しいジェイルブレイク戦術の5.7Kのユニークなクラスタを発見する。
WildTeamingは、未確認のフロンティアLSMの脆弱性を明らかにし、最大4.6倍の多様性と敵の攻撃に成功した。
論文 参考訳(メタデータ) (2024-06-26T17:31:22Z) - SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance [48.80398992974831]
SafeAlignerは、ジェイルブレイク攻撃に対する防御を強化するためのデコード段階で実装された方法論である。
安全性を高めるために訓練されたセンチネルモデルと、よりリスクの高い応答を生成するように設計されたイントルーダモデルである。
SafeAlignerは有害なトークンの発生を低減しつつ、有益トークンの可能性を高めることができることを示す。
論文 参考訳(メタデータ) (2024-06-26T07:15:44Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。