論文の概要: Two Stage Segmentation of Cervical Tumors using PocketNet
- arxiv url: http://arxiv.org/abs/2409.11456v1
- Date: Tue, 17 Sep 2024 17:48:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 20:09:46.026683
- Title: Two Stage Segmentation of Cervical Tumors using PocketNet
- Title(参考訳): PocketNet を用いた頸部腫瘍の2段階分離
- Authors: Awj Twam, Megan Jacobsen, Rachel Glenn, Ann Klopp, Aradhana M. Venkatesan, David Fuentes,
- Abstract要約: この研究は、新しいディープラーニングモデル(PocketNet)を用いて、T2w MRI上の頸部、血管、子宮、腫瘍を分割した。
PocketNetはDice-Sorensen類似度係数 (DSC) を70%以上, 臓器分節率 (80%) で達成した。
- 参考スコア(独自算出の注目度): 0.32985979395737786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cervical cancer remains the fourth most common malignancy amongst women worldwide.1 Concurrent chemoradiotherapy (CRT) serves as the mainstay definitive treatment regimen for locally advanced cervical cancers and includes external beam radiation followed by brachytherapy.2 Integral to radiotherapy treatment planning is the routine contouring of both the target tumor at the level of the cervix, associated gynecologic anatomy and the adjacent organs at risk (OARs). However, manual contouring of these structures is both time and labor intensive and associated with known interobserver variability that can impact treatment outcomes. While multiple tools have been developed to automatically segment OARs and the high-risk clinical tumor volume (HR-CTV) using computed tomography (CT) images,3,4,5,6 the development of deep learning-based tumor segmentation tools using routine T2-weighted (T2w) magnetic resonance imaging (MRI) addresses an unmet clinical need to improve the routine contouring of both anatomical structures and cervical cancers, thereby increasing quality and consistency of radiotherapy planning. This work applied a novel deep-learning model (PocketNet) to segment the cervix, vagina, uterus, and tumor(s) on T2w MRI. The performance of the PocketNet architecture was evaluated, when trained on data via 5-fold cross validation. PocketNet achieved a mean Dice-Sorensen similarity coefficient (DSC) exceeding 70% for tumor segmentation and 80% for organ segmentation. These results suggest that PocketNet is robust to variations in contrast protocols, providing reliable segmentation of the ROIs.
- Abstract(参考訳): 頸部がんは世界で4番目に多い悪性腫瘍である。
CRT(Concurrent chemoradiotherapy)は局所進行子宮頸癌に対する主治的治療薬であり, 放射線照射, ブラキセラピーを併用する。
放射線治療療法計画とは, 子宮頸部, 関連婦人科解剖学, 隣接臓器(OAR)の両腫瘍の定期的な構成である。
しかしながら、これらの構造を手動で構成することは時間と労力の両方に重きを置いており、治療結果に影響を及ぼす可能性のある既知のオブザーバ間の変動と関連している。
CT画像(3,4,5,6)を用いてOARと高リスク臨床腫瘍容積(HR-CTV)を自動的に分離する複数のツールが開発されているが,T2-weighted (T2w) MRIを用いた深層学習ベースの腫瘍分割ツールの開発は,解剖学的構造と頚部癌の両方の定期的構成を改善するために,未治療の臨床的ニーズに対処し,放射線治療計画の品質と整合性を高める。
この研究は、新しいディープラーニングモデル(PocketNet)を用いて、T2w MRI上の頸部、血管、子宮、腫瘍を分割した。
PocketNetアーキテクチャのパフォーマンスは、5倍のクロスバリデーションによるデータトレーニングによって評価された。
PocketNetはDice-Sorensen類似度係数 (DSC) を70%以上, 臓器分節率 (80%) で達成した。
これらの結果は、PocketNetはコントラストプロトコルのバリエーションに対して堅牢であり、ROIの信頼性の高いセグメンテーションを提供することを示唆している。
関連論文リスト
- UMambaAdj: Advancing GTV Segmentation for Head and Neck Cancer in MRI-Guided RT with UMamba and nnU-Net ResEnc Planner [0.04924932828166548]
頭頸部癌(HNC)に対する適応放射線療法においてMRIが重要な役割を担っている。
原発性腫瘍 (GTVp) とリンパ節 (GTVn) の両方を含む総腫瘍容積 (GTV) を正確に区分することは依然として困難である。
最近の2つのディープラーニングセグメンテーションの革新は、効果的に長距離依存関係をキャプチャするUMambaと、多段階残差ブロックによる特徴抽出を強化するnnU-Net Residual (ResEnc)の2つの大きな約束を示している。
論文 参考訳(メタデータ) (2024-10-16T18:26:27Z) - Evaluating the Impact of Sequence Combinations on Breast Tumor Segmentation in Multiparametric MRI [0.0]
mpMRIにおける配列の組み合わせの効果は未解明のままである。
DCE配列を用いたnnU-Netモデルは機能腫瘍容積(FTV)セグメンテーションにおいて0.69$pm$0.18のDice類似係数(DSC)を達成した。
論文 参考訳(メタデータ) (2024-06-12T02:09:05Z) - Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
BraTS-MEN-RTの課題は、脳MRIを計画する放射線治療の最大のマルチ機関データセットを使用して、自動セグメンテーションアルゴリズムを進化させることである。
それぞれの症例には、3D後T1強調放射線治療計画MRIがネイティブな取得スペースに含まれている。
ターゲットボリュームアノテーションは、確立された放射線治療計画プロトコルに準拠している。
論文 参考訳(メタデータ) (2024-05-28T17:25:43Z) - The 2024 Brain Tumor Segmentation (BraTS) Challenge: Glioma Segmentation on Post-treatment MRI [5.725734864357991]
治療後のグリオーマMRIに対する2024 Brain tumor (BraTS)チャレンジは、最先端の自動セグメンテーションモデルのコミュニティ標準とベンチマークを提供する。
競合他社は、4つの異なる腫瘍サブリージョンを予測するために、自動セグメンテーションモデルを開発する。
モデルは別個の検証とテストデータセットで評価される。
論文 参考訳(メタデータ) (2024-05-28T17:07:55Z) - Segmentation of glioblastomas in early post-operative multi-modal MRI
with deep neural networks [33.51490233427579]
手術前セグメンテーションのための2つの最先端ニューラルネットワークアーキテクチャをトレーニングした。
最高の成績は61%のDiceスコアで、最高の分類性能は80%のバランスの取れた精度で達成された。
予測セグメンテーションは、患者を残存腫瘍と全切除患者に正確に分類するために用いられる。
論文 参考訳(メタデータ) (2023-04-18T10:14:45Z) - Segmentation of Planning Target Volume in CT Series for Total Marrow
Irradiation Using U-Net [0.0]
U-Netアーキテクチャを用いたTMLI処理のためのプランニングターゲットボリューム(PTV)のセグメンテーションのためのディープラーニングに基づく自動コンストラクション手法を提案する。
本研究は放射線腫瘍学者を相当の時間で救うことができるセグメンテーションモデルの開発に向けた予備的だが重要なステップである。
論文 参考訳(メタデータ) (2023-04-05T10:40:37Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
本稿では,各脊椎の剛性と容積を保存し,登録精度を最大化しながら,弱教師付き深層学習フレームワークを提案する。
また,CTにおける椎体自動分節化はMRIと対比してより正確な結果をもたらすため,CTラベルマップのみに依存するよう,これらの損失を特に設計する。
以上の結果から, 解剖学的認識による損失の増大は, 精度を維持しつつも, 推測変換の妥当性を高めることが示唆された。
論文 参考訳(メタデータ) (2022-05-16T10:59:55Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。