Preventing Representational Rank Collapse in MPNNs by Splitting the Computational Graph
- URL: http://arxiv.org/abs/2409.11504v2
- Date: Mon, 09 Dec 2024 14:03:33 GMT
- Title: Preventing Representational Rank Collapse in MPNNs by Splitting the Computational Graph
- Authors: Andreas Roth, Franka Bause, Nils M. Kriege, Thomas Liebig,
- Abstract summary: We show that operating on multiple directed acyclic graphs always satisfies our condition and propose to obtain these by defining a strict partial ordering of the nodes.
We conduct comprehensive experiments that confirm the benefits of operating on multi-relational graphs to achieve more informative node representations.
- Score: 9.498398257062641
- License:
- Abstract: The ability of message-passing neural networks (MPNNs) to fit complex functions over graphs is limited as most graph convolutions amplify the same signal across all feature channels, a phenomenon known as rank collapse, and over-smoothing as a special case. Most approaches to mitigate over-smoothing extend common message-passing schemes, e.g., the graph convolutional network, by utilizing residual connections, gating mechanisms, normalization, or regularization techniques. Our work contrarily proposes to directly tackle the cause of this issue by modifying the message-passing scheme and exchanging different types of messages using multi-relational graphs. We identify a sufficient condition to ensure linearly independent node representations. As one instantion, we show that operating on multiple directed acyclic graphs always satisfies our condition and propose to obtain these by defining a strict partial ordering of the nodes. We conduct comprehensive experiments that confirm the benefits of operating on multi-relational graphs to achieve more informative node representations.
Related papers
- Task-Oriented Communication for Graph Data: A Graph Information Bottleneck Approach [12.451324619122405]
This paper introduces a method to extract a smaller, task-focused subgraph that maintains key information while reducing communication overhead.
Our approach utilizes graph neural networks (GNNs) and the graph information bottleneck (GIB) principle to create a compact, informative, and robust graph representation suitable for transmission.
arXiv Detail & Related papers (2024-09-04T14:01:56Z) - Scalable Graph Compressed Convolutions [68.85227170390864]
We propose a differentiable method that applies permutations to calibrate input graphs for Euclidean convolution.
Based on the graph calibration, we propose the Compressed Convolution Network (CoCN) for hierarchical graph representation learning.
arXiv Detail & Related papers (2024-07-26T03:14:13Z) - TouchUp-G: Improving Feature Representation through Graph-Centric
Finetuning [37.318961625795204]
Graph Neural Networks (GNNs) have become the state-of-the-art approach for many high-impact, real-world graph applications.
For feature-rich graphs, a prevalent practice involves utilizing a PM directly to generate features.
This practice is suboptimal because the node features extracted from PM are graph-agnostic and prevent GNNs from fully utilizing the potential correlations between the graph structure and node features.
arXiv Detail & Related papers (2023-09-25T05:44:40Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
We propose a framework dubbed Multi-view Graph Convolutional Network with Differentiable Node Selection (MGCN-DNS)
MGCN-DNS accepts multi-channel graph-structural data as inputs and aims to learn more robust graph fusion through a differentiable neural network.
The effectiveness of the proposed method is verified by rigorous comparisons with considerable state-of-the-art approaches.
arXiv Detail & Related papers (2022-12-09T21:48:36Z) - Affinity-Aware Graph Networks [9.888383815189176]
Graph Neural Networks (GNNs) have emerged as a powerful technique for learning on relational data.
We explore the use of affinity measures as features in graph neural networks.
We propose message passing networks based on these features and evaluate their performance on a variety of node and graph property prediction tasks.
arXiv Detail & Related papers (2022-06-23T18:51:35Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Graph Ordering Attention Networks [22.468776559433614]
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data.
We introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood.
GOAT layer demonstrates its increased performance in modeling graph metrics that capture complex information.
arXiv Detail & Related papers (2022-04-11T18:13:19Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.