論文の概要: Chess Rating Estimation from Moves and Clock Times Using a CNN-LSTM
- arxiv url: http://arxiv.org/abs/2409.11506v1
- Date: Tue, 17 Sep 2024 19:19:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 19:59:44.539358
- Title: Chess Rating Estimation from Moves and Clock Times Using a CNN-LSTM
- Title(参考訳): CNN-LSTMによるモブとクロックタイムのチェスレーティング推定
- Authors: Michael Omori, Prasad Tadepalli,
- Abstract要約: 現在の格付けシステムは段階的に格付けを更新し、常にプレイヤーの真の強さを正確に反映するとは限らない。
これを解決するために,ゲームの動きや時計時間から直接プレイヤーの格付けを推定する方法を探索する。
このモデルは、手作りの機能を使わずにチェスのレーティングを推定し、また、各動きのレーティング予測を出力した最初のモデルである。
- 参考スコア(独自算出の注目度): 11.340099493701029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current rating systems update ratings incrementally and may not always accurately reflect a player's true strength at all times, especially for rapidly improving players or very rusty players. To overcome this, we explore a method to estimate player ratings directly from game moves and clock times. We compiled a benchmark dataset from Lichess, encompassing various time controls and including move sequences and clock times. Our model architecture comprises a CNN to learn positional features, which are then integrated with clock-time data into a bidirectional LSTM, predicting player ratings after each move. The model achieved an MAE of 182 rating points in the test data. Additionally, we applied our model to the 2024 IEEE Big Data Cup Chess Puzzle Difficulty Competition dataset, predicted puzzle ratings and achieved competitive results. This model is the first to use no hand-crafted features to estimate chess ratings and also the first to output a rating prediction for each move. Our method highlights the potential of using move-based rating estimation for enhancing rating systems and potentially other applications such as cheating detection.
- Abstract(参考訳): 現在の格付けシステムは段階的に格付けを更新し、プレイヤーの真の強さを常に正確に反映するとは限らない。
これを解決するために,ゲームの動きや時計時間から直接プレイヤーの格付けを推定する方法を探索する。
Lichessからベンチマークデータセットをコンパイルし、さまざまな時間制御、移動シーケンスとクロック時間を含む。
我々のモデルアーキテクチャは、CNNを用いて位置特徴を学習し、クロックタイムデータを双方向LSTMに統合し、各移動後のプレイヤーのレーティングを予測する。
このモデルはテストデータにおいて182のレーティングポイントのMAEを達成した。
さらに、私たちのモデルをIEEE Big Data Cup Chess Puzzle Difficulty Competitionデータセットに適用し、パズルのレーティングを予測し、競争結果を得た。
このモデルは、手作りの機能を使わずにチェスのレーティングを推定し、また、各動きのレーティング予測を出力した最初のモデルである。
提案手法は,評価システムの向上に移動に基づく評価評価を用いる可能性や,不正検出など他の応用の可能性を強調した。
関連論文リスト
- SureMap: Simultaneous Mean Estimation for Single-Task and Multi-Task Disaggregated Evaluation [75.56845750400116]
分散評価(disaggregated evaluation) -- 異なるサブポピュレーション上での機械学習モデルのパフォーマンスの推定 - は、AIシステムのパフォーマンスとグループフェアネスを評価する上で、中核的なタスクである。
ブラックボックスモデルの評価において,マルチタスクとシングルタスクの双方に対して高い推定精度を持つSureMapを開発した。
提案手法は, ウェル・チョーゼンを用いた最大後部推定と, スタインの非バイアスリスク推定(SURE)によるクロスバリデーションフリーチューニングを併用する。
論文 参考訳(メタデータ) (2024-11-14T17:53:35Z) - Analytical and Empirical Study of Herding Effects in Recommendation Systems [72.6693986712978]
評価アグリゲーションルールとショートリストされた代表レビューを用いて製品評価を管理する方法について検討する。
本稿では,Amazon と TripAdvisor の収束速度を向上させるために,適切な信頼度評価アグリゲーションルールが有効であることを示す。
論文 参考訳(メタデータ) (2024-08-20T14:29:23Z) - CNN-based Game State Detection for a Foosball Table [1.612440288407791]
フォスボールのゲームでは、コンパクトで包括的なゲーム状態の記述は、フィギュアの位置シフトと回転と、時間とともにボールの位置で構成される。
本稿では,フォスボールのゲーム状態を決定するフィギュア検出システムについて述べる。
このデータセットを使用して、畳み込みニューラルネットワーク(CNN)ベースのエンドツーエンド回帰モデルをトレーニングし、各ロッドの回転とシフトを予測する。
論文 参考訳(メタデータ) (2024-04-08T09:48:02Z) - Amortized Planning with Large-Scale Transformers: A Case Study on Chess [11.227110138932442]
本稿では,AIにおける画期的な計画問題であるチェスを用いて,計画課題の性能評価を行う。
ChessBenchは、Stockfishが提供する法的行動と価値アノテーション(1500億ポイント)を備えた1000万のチェスゲームの大規模なベンチマークである。
極めて優れた近似を教師付き学習により大規模変圧器に蒸留することは可能であるが, 完全蒸留は依然として到達範囲を超えている。
論文 参考訳(メタデータ) (2024-02-07T00:36:24Z) - End-to-End Chess Recognition [11.15543089335477]
現在のアプローチでは、チェスボードの検出、平方ローカライゼーション、ピース分類といった独立した独立したモジュールのパイプラインを使用している。
本稿では、画像から構成を直接予測するエンドツーエンドアプローチについて検討し、シーケンシャルアプローチのエラー蓄積を回避する。
合成レンダリングされ、角度が限られている既存のデータセットとは対照的に、ChessReDはスマートフォンカメラを使ってさまざまな角度から撮影されている。
ChessReDのテスト画像の15.26%で、チェスのピースの構成を認識することに成功した。
論文 参考訳(メタデータ) (2023-10-06T08:30:20Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
アクションスポッティングには、ゲームのダイナミクス、イベントの複雑さ、ビデオシーケンスのバリエーションを理解することが含まれる。
本研究では, (a) 選手, 審判, ゴールキーパーをグラフのノードとして識別し, および (b) 時間的相互作用をグラフのシーケンスとしてモデル化することによって, 前者に焦点を当てる。
プレーヤ識別タスクでは,他のモダリティと組み合わせることで,平均mAPの57.83%の総合的な性能が得られる。
論文 参考訳(メタデータ) (2022-11-22T15:23:53Z) - Determining Chess Game State From an Image [19.06796946564999]
本稿では,既存のモデルよりも桁違いに大きい3次元モデルから合成した新しいデータセットについて述べる。
従来のコンピュータビジョン技術とディープラーニングを組み合わせた新しいエンドツーエンドチェス認識システムを紹介します。
記述されたシステムでは,テストセット上での誤差率は0.23%であり,現状の28倍である。
論文 参考訳(メタデータ) (2021-04-30T13:02:13Z) - LiveChess2FEN: a Framework for Classifying Chess Pieces based on CNNs [0.0]
我々は,1秒未満で画像からチェス位置を自動的にデジタル化する機能的フレームワークを実装した。
チェスの駒の分類と組込みプラットフォーム上で効率的にマップする方法について、さまざまな畳み込みニューラルネットワークを分析した。
論文 参考訳(メタデータ) (2020-12-12T16:48:40Z) - Interpretable Real-Time Win Prediction for Honor of Kings, a Popular
Mobile MOBA Esport [51.20042288437171]
本研究では,2段階空間時間ネットワーク(TSSTN)を提案する。
実世界のライブストリーミングシナリオにおける実験結果と応用により,提案したTSSTNモデルは予測精度と解釈可能性の両方において有効であることが示された。
論文 参考訳(メタデータ) (2020-08-14T12:00:58Z) - Evaluation Toolkit For Robustness Testing Of Automatic Essay Scoring
Systems [64.4896118325552]
モデル逆算評価スキームと関連するメトリクスを用いて、現状のAESモデルを評価する。
AESモデルは非常に過大評価されていることがわかった。質問の話題に関係のない内容の重い修正(25%まで)でさえ、モデルが生み出すスコアを低下させることはない。
論文 参考訳(メタデータ) (2020-07-14T03:49:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。