Enhancing PM2.5 Data Imputation and Prediction in Air Quality Monitoring Networks Using a KNN-SINDy Hybrid Model
- URL: http://arxiv.org/abs/2409.11640v1
- Date: Wed, 18 Sep 2024 02:08:17 GMT
- Title: Enhancing PM2.5 Data Imputation and Prediction in Air Quality Monitoring Networks Using a KNN-SINDy Hybrid Model
- Authors: Yohan Choi, Boaz Choi, Jachin Choi,
- Abstract summary: Air pollution, particularly particulate matter (PM2.5), poses significant risks to public health and the environment.
This study explores the application of Sparse Identification of Dynamics (SINDy2.5) for imputing missing PM2.5 data by predicting, using training data from 2016, and comparing its performance with the established Soft Impute (SI) and K-Nearest Neighbors (KNN) methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Air pollution, particularly particulate matter (PM2.5), poses significant risks to public health and the environment, necessitating accurate prediction and continuous monitoring for effective air quality management. However, air quality monitoring (AQM) data often suffer from missing records due to various technical difficulties. This study explores the application of Sparse Identification of Nonlinear Dynamics (SINDy) for imputing missing PM2.5 data by predicting, using training data from 2016, and comparing its performance with the established Soft Impute (SI) and K-Nearest Neighbors (KNN) methods.
Related papers
- Guided Discrete Diffusion for Electronic Health Record Generation [47.129056768385084]
EHRs are a pivotal data source that enables numerous applications in computational medicine, e.g., disease progression prediction, clinical trial design, and health economics and outcomes research.
Despite wide usability, their sensitive nature raises privacy and confidentially concerns, which limit potential use cases.
To tackle these challenges, we explore the use of generative models to synthesize artificial, yet realistic EHRs.
arXiv Detail & Related papers (2024-04-18T16:50:46Z) - A Framework for Scalable Ambient Air Pollution Concentration Estimation [0.0]
Ambient air pollution remains a critical issue in the United Kingdom, where data on air pollution concentrations form the foundation for interventions aimed at improving air quality.
We introduce a data-driven supervised machine learning model framework designed to address temporal and spatial data gaps by filling missing measurements.
This approach provides a comprehensive dataset for England throughout 2018 at a 1kmx1km hourly resolution.
arXiv Detail & Related papers (2024-01-16T18:03:07Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Detecting Elevated Air Pollution Levels by Monitoring Web Search
Queries: Deep Learning-Based Time Series Forecasting [7.978612711536259]
Prior work relied on modeling pollutant concentrations collected from ground-based monitors and meteorological data for long-term forecasting.
This study aims to develop and validate models to nowcast the observed pollution levels using Web search data, which is publicly available in near real-time from major search engines.
We developed novel machine learning-based models using both traditional supervised classification methods and state-of-the-art deep learning methods to detect elevated air pollution levels at the US city level.
arXiv Detail & Related papers (2022-11-09T23:56:35Z) - Robust Trajectory Prediction against Adversarial Attacks [84.10405251683713]
Trajectory prediction using deep neural networks (DNNs) is an essential component of autonomous driving systems.
These methods are vulnerable to adversarial attacks, leading to serious consequences such as collisions.
In this work, we identify two key ingredients to defend trajectory prediction models against adversarial attacks.
arXiv Detail & Related papers (2022-07-29T22:35:05Z) - Tracking Air Pollution in China: Near Real-Time PM2.5 Retrievals from
Multiple Data Sources [17.330234783027855]
Daily full-coverage PM2.5 data at a spatial resolution of 10 km is our first near real-time product.
Long-term records of PM2.5 data since 2000 will also support policy assessments and health impact studies.
arXiv Detail & Related papers (2021-03-11T08:17:36Z) - A Novel Hybrid Framework for Hourly PM2.5 Concentration Forecasting
Using CEEMDAN and Deep Temporal Convolutional Neural Network [2.2175470459999636]
This study develops a novel hybrid forecasting model based on complete ensemble empirical mode decomposition with adaptive noise.
The forecasting accuracy of the proposed CEEMDAN-DeepTCN model is verified to be the highest when compared with the time series model, artificial neural network, and the popular deep learning models.
The new model has improved the capability to model the PM2.5-related factor data patterns, and can be used as a promising tool for forecasting PM2.5 concentrations.
arXiv Detail & Related papers (2020-12-07T15:22:01Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z) - Analytical Equations based Prediction Approach for PM2.5 using
Artificial Neural Network [0.0]
Particulate Matter (PM2.5) is one of the important particulate pollutants to measure the Air Quality Index (AQI)
The conventional instruments used by the air quality monitoring stations to monitor PM2.5 are costly, bulkier, time-consuming, and power-hungry.
This article presents analytical equations based prediction approach for PM2.5 using an Artificial Neural Network (ANN)
arXiv Detail & Related papers (2020-02-26T11:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.