論文の概要: Hard-Label Cryptanalytic Extraction of Neural Network Models
- arxiv url: http://arxiv.org/abs/2409.11646v1
- Date: Wed, 18 Sep 2024 02:17:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 19:29:58.453167
- Title: Hard-Label Cryptanalytic Extraction of Neural Network Models
- Title(参考訳): ニューラルネットワークモデルのハードラベルクリプトアナライズ
- Authors: Yi Chen, Xiaoyang Dong, Jian Guo, Yantian Shen, Anyu Wang, Xiaoyun Wang,
- Abstract要約: ハードラベル設定下で機能的に等価な抽出を理論的に達成する最初の攻撃を提案する。
我々の攻撃の有効性は、広範囲のReLUニューラルネットワーク上での実践的な実験を通じて検証される。
- 参考スコア(独自算出の注目度): 10.568722566232127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The machine learning problem of extracting neural network parameters has been proposed for nearly three decades. Functionally equivalent extraction is a crucial goal for research on this problem. When the adversary has access to the raw output of neural networks, various attacks, including those presented at CRYPTO 2020 and EUROCRYPT 2024, have successfully achieved this goal. However, this goal is not achieved when neural networks operate under a hard-label setting where the raw output is inaccessible. In this paper, we propose the first attack that theoretically achieves functionally equivalent extraction under the hard-label setting, which applies to ReLU neural networks. The effectiveness of our attack is validated through practical experiments on a wide range of ReLU neural networks, including neural networks trained on two real benchmarking datasets (MNIST, CIFAR10) widely used in computer vision. For a neural network consisting of $10^5$ parameters, our attack only requires several hours on a single core.
- Abstract(参考訳): ニューラルネットワークパラメータを抽出する機械学習問題は、30年近く前から提案されている。
機能的に等価な抽出は、この問題の研究にとって重要な目標である。
敵がニューラルネットワークの生の出力にアクセスすると、CRYPTO 2020とEUROCRYPT 2024で提示された攻撃を含む様々な攻撃がこの目標を達成した。
しかし、ニューラルネットワークが生の出力にアクセスできないハードラベル設定の下で動作している場合、この目標は達成されない。
本稿では,ReLUニューラルネットワークに適用したハードラベル環境下で機能的に等価な抽出を理論的に達成した最初の攻撃を提案する。
我々の攻撃の有効性は、コンピュータビジョンで広く使われている2つの実ベンチマークデータセット(MNIST, CIFAR10)でトレーニングされたニューラルネットワークを含む、幅広いReLUニューラルネットワークの実践的な実験を通じて検証される。
10^5$パラメータからなるニューラルネットワークの場合、我々の攻撃は単一のコア上で数時間しか必要としない。
関連論文リスト
- NEAR: A Training-Free Pre-Estimator of Machine Learning Model Performance [0.0]
我々は、トレーニングなしで最適なニューラルネットワークを特定するために、アクティベーションランク(NEAR)によるゼロコストプロキシネットワーク表現を提案する。
このネットワークスコアとNAS-Bench-101とNATS-Bench-SSS/TSSのモデル精度の最先端相関を実証した。
論文 参考訳(メタデータ) (2024-08-16T14:38:14Z) - Polynomial Time Cryptanalytic Extraction of Neural Network Models [3.3466632238361393]
ReLUベースのディープニューラルネットワークに対する最新の攻撃は、Crypto 2020で発表された。
新しい手法により、ReLUベースのニューラルネットワークの実際のパラメータをすべて任意に高精度に抽出できる。
論文 参考訳(メタデータ) (2023-10-12T20:44:41Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Scalable Lipschitz Residual Networks with Convex Potential Flows [120.27516256281359]
残差ネットワーク勾配流における凸ポテンシャルを用いることで,1ドルのLipschitz変換が組み込まれていることを示す。
CIFAR-10の包括的な実験は、アーキテクチャのスケーラビリティと、証明可能な防御に$ell$のアプローチの利点を実証している。
論文 参考訳(メタデータ) (2021-10-25T07:12:53Z) - Deep Kronecker neural networks: A general framework for neural networks
with adaptive activation functions [4.932130498861987]
我々は,適応的アクティベーション機能を持つニューラルネットワークの汎用フレームワークとして,新しいタイプのニューラルネットワークKronecker Neural Network(KNN)を提案する。
適切な条件下では、KNNはフィードフォワードネットワークによる損失よりも早く損失を減少させる。
論文 参考訳(メタデータ) (2021-05-20T04:54:57Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z) - Neural Networks and Value at Risk [59.85784504799224]
リスクしきい値推定における資産価値のモンテカルロシミュレーションを行う。
株式市場と長期債を試験資産として利用し、ニューラルネットワークについて検討する。
はるかに少ないデータでフィードされたネットワークは、大幅にパフォーマンスが悪くなっています。
論文 参考訳(メタデータ) (2020-05-04T17:41:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。