論文の概要: How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities
- arxiv url: http://arxiv.org/abs/2409.11654v1
- Date: Wed, 18 Sep 2024 02:41:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 19:19:53.419986
- Title: How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities
- Title(参考訳): 人工知能で仮想細胞を作る方法:優先事項と機会
- Authors: Charlotte Bunne, Yusuf Roohani, Yanay Rosen, Ankit Gupta, Xikun Zhang, Marcel Roed, Theo Alexandrov, Mohammed AlQuraishi, Patricia Brennan, Daniel B. Burkhardt, Andrea Califano, Jonah Cool, Abby F. Dernburg, Kirsty Ewing, Emily B. Fox, Matthias Haury, Amy E. Herr, Eric Horvitz, Patrick D. Hsu, Viren Jain, Gregory R. Johnson, Thomas Kalil, David R. Kelley, Shana O. Kelley, Anna Kreshuk, Tim Mitchison, Stephani Otte, Jay Shendure, Nicholas J. Sofroniew, Fabian Theis, Christina V. Theodoris, Srigokul Upadhyayula, Marc Valer, Bo Wang, Eric Xing, Serena Yeung-Levy, Marinka Zitnik, Theofanis Karaletsos, Aviv Regev, Emma Lundberg, Jure Leskovec, Stephen R. Quake,
- Abstract要約: そこで我々は,生物データから細胞と細胞系の堅牢な表現を直接学習する,AIを利用した仮想セルのビジョンを提案する。
我々は,AI仮想細胞が望まれる能力について論じる。
我々は、AI仮想細胞が新しい薬物標的を特定し、摂動に対する細胞反応を予測し、スケール仮説を探索する未来を想像する。
- 参考スコア(独自算出の注目度): 46.671834972945874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The cell is arguably the smallest unit of life and is central to understanding biology. Accurate modeling of cells is important for this understanding as well as for determining the root causes of disease. Recent advances in artificial intelligence (AI), combined with the ability to generate large-scale experimental data, present novel opportunities to model cells. Here we propose a vision of AI-powered Virtual Cells, where robust representations of cells and cellular systems under different conditions are directly learned from growing biological data across measurements and scales. We discuss desired capabilities of AI Virtual Cells, including generating universal representations of biological entities across scales, and facilitating interpretable in silico experiments to predict and understand their behavior using Virtual Instruments. We further address the challenges, opportunities and requirements to realize this vision including data needs, evaluation strategies, and community standards and engagement to ensure biological accuracy and broad utility. We envision a future where AI Virtual Cells help identify new drug targets, predict cellular responses to perturbations, as well as scale hypothesis exploration. With open science collaborations across the biomedical ecosystem that includes academia, philanthropy, and the biopharma and AI industries, a comprehensive predictive understanding of cell mechanisms and interactions is within reach.
- Abstract(参考訳): 細胞はおそらく最小の生命単位であり、生物学の理解の中心である。
細胞の正確なモデリングは、病気の根本原因を決定するだけでなく、この理解にも重要である。
人工知能(AI)の最近の進歩は、大規模な実験データを生成する能力と相まって、細胞をモデル化する新たな機会を提供する。
ここでは、異なる条件下での細胞と細胞システムの堅牢な表現が、測定とスケールにわたる生物学的データから直接学習される、AIによる仮想セルのビジョンを提案する。
我々は,AI仮想セルの望まれる能力について論じる。例えば,大規模にまたがる生物学的実体の普遍的な表現の生成や,シリコ実験における解釈の容易化により,仮想インスツルメンツを用いた動作の予測と理解が可能である。
さらに、このビジョンを実現するための課題、機会、要件、例えば、データの要求、評価戦略、および、生物学的精度と幅広い実用性を保証するためのコミュニティ標準とエンゲージメントに対処する。
我々は、AI仮想細胞が新しい薬物標的を特定し、摂動に対する細胞反応を予測し、スケール仮説を探索する未来を想像する。
学術、慈善、バイオファーマ、AI産業を含むバイオメディカルエコシステム全体にわたるオープンサイエンスのコラボレーションによって、細胞機構と相互作用に関する包括的な予測的理解が到達範囲内にある。
関連論文リスト
- Empowering Biomedical Discovery with AI Agents [15.125735219811268]
我々は「AI科学者」を懐疑的な学習と推論が可能なシステムとして想定する。
バイオメディカルAIエージェントは、人間の創造性と専門知識と、大規模なデータセットを分析するAIの能力を組み合わせる。
AIエージェントは、仮想細胞シミュレーション、プログラム可能な表現型の制御、細胞回路の設計、新しい治療法の開発など、幅広い領域に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-04-03T16:08:01Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
研究結果を複製するという課題は、分子生物学の分野に重大な障害をもたらしている。
まず、この目的に向けた最初のステップとして、ProBioという名前の包括的なマルチモーダルデータセットをキュレートする。
次に、透明なソリューショントラッキングとマルチモーダルなアクション認識という2つの挑戦的なベンチマークを考案し、BioLab設定におけるアクティビティ理解に関連する特徴と難しさを強調した。
論文 参考訳(メタデータ) (2023-11-01T14:44:01Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Zyxin is all you need: machine learning adherent cell mechanics [0.0]
データ駆動型生体物理モデリング手法を開発し、接着細胞の力学的挙動を学習する。
まず、細胞骨格タンパク質の画像から付着細胞が生成する力を予測するためにニューラルネットワークを訓練する。
次に、我々は、細胞力のデータ駆動モデルを構築するのに役立つ2つのアプローチ(一つは物理学によって明示的に制約された、もう一つは連続体)を開発します。
論文 参考訳(メタデータ) (2023-03-01T02:08:40Z) - Application of Machine Learning in understanding plant virus
pathogenesis: Trends and perspectives on emergence, diagnosis, host-virus
interplay and management [1.949912057689623]
深層学習アルゴリズムは、植物ウイルス学を含むいくつかの分野の生物学における機械学習の適用をさらに促進する。
植物ウイルス学の理解における機械学習の適用の著しい進歩を考えると、このレビューは機械学習に関する序文を強調している。
論文 参考訳(メタデータ) (2021-12-03T16:25:26Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。