論文の概要: Exploring Gaze Pattern Differences Between ASD and TD Children Using Internal Cluster Validity Indices
- arxiv url: http://arxiv.org/abs/2409.11744v2
- Date: Wed, 12 Feb 2025 06:53:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:46:33.275894
- Title: Exploring Gaze Pattern Differences Between ASD and TD Children Using Internal Cluster Validity Indices
- Title(参考訳): 内部クラスタ妥当性指標を用いたASDとTD児の視線パターンの差異の探索
- Authors: Weiyan Shi, Haihong Zhang, Ruiqing Ding, YongWei Zhu, Wei Wang, Kenny Tsu Wei Choo,
- Abstract要約: 内部クラスタの妥当性指標は、ASDと発達期(TD)児の視線パターンの違いを区別するために用いられる。
本研究では,7つのクラスタリングアルゴリズムを適用し,63個の内部クラスタ妥当性指標を抽出し,ASD診断と相関関係を明らかにする。
3つのデータセットの実験は高い予測精度(81% AUC)を示し、これらの指標の有効性を検証する。
- 参考スコア(独自算出の注目度): 10.382714580692237
- License:
- Abstract: Autism Spectrum Disorder (ASD) affects children's social and communication abilities, with eye-tracking widely used to identify atypical gaze patterns. While unsupervised clustering can automate the creation of areas of interest for gaze feature extraction, the use of internal cluster validity indices, like Silhouette Coefficient, to distinguish gaze pattern differences between ASD and typically developing (TD) children remains underexplored. We explore whether internal cluster validity indices can distinguish ASD from TD children. Specifically, we apply seven clustering algorithms to gaze points and extract 63 internal cluster validity indices to reveal correlations with ASD diagnosis. Using these indices, we train predictive models for ASD diagnosis. Experiments on three datasets demonstrate high predictive accuracy (81\% AUC), validating the effectiveness of these indices.
- Abstract(参考訳): 自閉症スペクトラム障害(ASD)は子どもの社会的・コミュニケーション能力に影響を与え、視線追跡は非定型視線パターンの識別に広く用いられている。
教師なしクラスタリングは、視線特徴抽出のための関心領域の作成を自動化することができるが、内部クラスタの妥当性指標(例えばシルエット係数)を使うことで、視線パターンの違いをASDと通常発達する(TD)子供の間で区別することができる。
内部クラスタの妥当性指標がASDとTD児を区別できるかどうかを考察する。
具体的には,7つのクラスタリングアルゴリズムを適用し,63個の内部クラスタ妥当性指標を抽出し,ASD診断と相関関係を明らかにする。
これらの指標を用いて,ASD診断のための予測モデルを訓練する。
3つのデータセットの実験では、高い予測精度 (81\% AUC) を示し、これらの指標の有効性を検証する。
関連論文リスト
- Hugging Rain Man: A Novel Facial Action Units Dataset for Analyzing Atypical Facial Expressions in Children with Autism Spectrum Disorder [2.3001245059699014]
我々は,ASDと典型的発達(TD)の双方に対して,FACSの専門家が手動でアノテートした顔アクションユニット(AU)を含む,新しいデータセットHugging Rain Manを紹介する。
データセットには、ポーズと自発的な表情の豊富なコレクションが含まれており、合計で約130,000フレーム、22のAU、10のAction Descriptors(AD)、非定型評価が含まれている。
論文 参考訳(メタデータ) (2024-11-21T02:51:52Z) - Involution Fused ConvNet for Classifying Eye-Tracking Patterns of
Children with Autism Spectrum Disorder [1.225920962851304]
自閉症スペクトラム障害(ASD)は、診断が難しい複雑な神経疾患である。多くの研究では、ASDと診断された子供が注意範囲を維持し、焦点を絞った視力の低下に苦しむことが示されている。
視線追跡技術は、視線異常が自閉症の診断的特徴として認識されて以来、ASDの文脈で特に注目を集めてきた。
論文 参考訳(メタデータ) (2024-01-07T20:08:17Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - Autism Spectrum Disorder Classification in Children based on Structural
MRI Features Extracted using Contrastive Variational Autoencoder [5.2927782596213]
自閉症スペクトラム障害(Autism spectrum disorder、ASD)は、患者に社会的相互作用能力の重大な障害をもたらす精神疾患である。
機械学習とニューロイメージング技術の発展に伴い、構造MRI(s-MRI)に基づくASDの機械分類に関する研究が盛んに行われている。
5歳未満の被験者に対するASDの機械分類を行う研究はほとんどないが、わずかに予測精度が低い。
論文 参考訳(メタデータ) (2023-07-03T12:46:19Z) - OpenNDD: Open Set Recognition for Neurodevelopmental Disorders Detection [16.36536069562694]
ASD支援診断のための新しいオープンセット認識フレームワーク(OpenNDD)を設計する。
NDDの強い類似性を考えると、Min-MaxスケーリングとMMS(Standardization)を組み合わせた共同スケーリング法を提案する。
OpenNDDは77.38%、AUROCは75.53%、オープンセットの分類率は59.43%という有望な性能を実現しています。
論文 参考訳(メタデータ) (2023-06-28T09:28:33Z) - Sequential Attention Source Identification Based on Feature
Representation [88.05527934953311]
本稿では,テンポラルシーケンスに基づくグラフ注意源同定(TGASI)と呼ばれるシーケンス・ツー・シーケンス・ベースのローカライズ・フレームワークを提案する。
なお、このインダクティブラーニングのアイデアは、TGASIが他の事前の知識を知らずに新しいシナリオのソースを検出できることを保証する。
論文 参考訳(メタデータ) (2023-06-28T03:00:28Z) - Screening Autism Spectrum Disorder in childrens using Deep Learning
Approach : Evaluating the classification model of YOLOv8 by comparing with
other models [0.0]
そこで本稿では,YoloV8モデルを用いた顔画像を用いたASDスクリーニングの実践的解決策を提案する。
分類の精度は89.64%、F1スコアは0.89。
論文 参考訳(メタデータ) (2023-06-25T18:02:01Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
我々は脳を機能的ネットワークとしてモデル化できることを示し,ADHD被験者と制御対象とではネットワークの特定の特性が異なることを示した。
776名の被験者で分類器を訓練し,ADHD-200チャレンジのために神経局が提供する171名の被験者を対象に試験を行った。
論文 参考訳(メタデータ) (2023-06-15T16:22:57Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
最終分類器の性能は、潜在空間に存在するデータ分離と、射影に存在する視覚的分離に依存すると論じる。
本研究は,ヒト腸管寄生虫の5つの現実的課題の画像データセットを1%の教師付きサンプルで分類し,その結果を実証する。
論文 参考訳(メタデータ) (2023-02-06T10:01:38Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
我々は、外部のCXRデータセットを組み込むことで、不完全なトレーニングデータにつながると論じ、課題を提起する。
本研究は,多ラベル病分類問題を重み付き独立二分課題として分類する。
我々のフレームワークは、ドメインとラベルの相違を同時にモデル化し、対処し、優れた知識マイニング能力を実現する。
論文 参考訳(メタデータ) (2020-06-06T06:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。