Longitudinal Momentum Spectra of pair created in a pulsed field at finite times: Are Oscillations "Real"
- URL: http://arxiv.org/abs/2405.02947v3
- Date: Fri, 14 Jun 2024 14:32:30 GMT
- Title: Longitudinal Momentum Spectra of pair created in a pulsed field at finite times: Are Oscillations "Real"
- Authors: Deepak Sah, Manoranjan P. Singh,
- Abstract summary: We analytically compute the probability of $(e+ e-) $pair production in momentum space.
We compare the result with quantum kinetic theory (QKT)
Both approaches allow us to study the particle momentum spectrum at any instant in time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We discuss the mechanism of production of electron-positron pairs from the vacuum in a time-varying, spatially uniform pulsed electric field. We analytically compute the probability of $(e^+ e^-) $pair production in momentum space using the exact solution of the one-particle time-dependent Dirac equation and compare the result with quantum kinetic theory (QKT). Both approaches allow us to study the particle momentum spectrum at any instant in time and can potentially unveil valuable information regarding quantum non-equilibrium physics. We analyze both approaches' momentum spectra of the created particles at any instant. We observe a multi-profile structure in the LMS. This multi-profile structure clearly illustrates the quantum interference effects associated with pair production. It is worth noting that both approaches exhibit quantum interference patterns at finite times, manifested as oscillations observed in the LMS. We highlight that this quantum signature is a universal behavior seen in the momentum spectra at finite times, where the electric field is nearly zero.
Related papers
- Does the oscillatory behavior of the Momentum Spectrum depend on the basis in the Post-Transient Stage? [0.0]
Pair creation by a spatially homogeneous, time-dependent electric field is studied within the framework of quantum electrodynamics.
We employ the standard Bogoliubov transformation approach to compute the single-particle distribution function in an adiabatic basis.
arXiv Detail & Related papers (2024-10-17T21:34:25Z) - Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - Deterministic Quantum Field Trajectories and Macroscopic Effects [0.0]
The root to macroscopic quantum effects is revealed based on the quasiparticle model of collective excitations in an arbitrary degenerate electron gas.
It is remarked that any quantum many body system composed of large number of interacting particles acts as a dual arm device controlling the microscopic single particle effects with one hand and the macroscopic phenomena with the other.
arXiv Detail & Related papers (2023-11-16T06:23:09Z) - Quantum particle under dynamical confinement: From quantum Fermi
acceleration to high harmonic generation [0.0]
Quantum dynamics of a particle confined in a box with time-dependent wall is revisited.
Time-dependence of the average kinetic energy and average quantum force is analyzed.
A model for optical high harmonic generation in the presence of dynamical confinement and external linearly polarized monochromatic field is proposed.
arXiv Detail & Related papers (2023-09-27T03:57:33Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.