Unveiling the Black Box: Independent Functional Module Evaluation for Bird's-Eye-View Perception Model
- URL: http://arxiv.org/abs/2409.11969v1
- Date: Wed, 18 Sep 2024 13:20:46 GMT
- Title: Unveiling the Black Box: Independent Functional Module Evaluation for Bird's-Eye-View Perception Model
- Authors: Ludan Zhang, Xiaokang Ding, Yuqi Dai, Lei He, Keqiang Li,
- Abstract summary: We present the Independent Functional Module Evaluation for Bird's-Eye-View Perception Model (BEV-IFME)
The framework juxtaposes the module's feature maps against Ground Truth within a unified semantic Representation Space to quantify their similarity.
The metric for evaluating the training maturity of functional modules, Similarity Score, demonstrates a robust positive correlation with BEV metrics.
- Score: 11.239146186613203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end models are emerging as the mainstream in autonomous driving perception. However, the inability to meticulously deconstruct their internal mechanisms results in diminished development efficacy and impedes the establishment of trust. Pioneering in the issue, we present the Independent Functional Module Evaluation for Bird's-Eye-View Perception Model (BEV-IFME), a novel framework that juxtaposes the module's feature maps against Ground Truth within a unified semantic Representation Space to quantify their similarity, thereby assessing the training maturity of individual functional modules. The core of the framework lies in the process of feature map encoding and representation aligning, facilitated by our proposed two-stage Alignment AutoEncoder, which ensures the preservation of salient information and the consistency of feature structure. The metric for evaluating the training maturity of functional modules, Similarity Score, demonstrates a robust positive correlation with BEV metrics, with an average correlation coefficient of 0.9387, attesting to the framework's reliability for assessment purposes.
Related papers
- Interpret the Internal States of Recommendation Model with Sparse Autoencoder [26.021277330699963]
RecSAE is an automatic, generalizable probing method for interpreting the internal states of Recommendation models.
We train an autoencoder with sparsity constraints to reconstruct internal activations of recommendation models.
We automated the construction of concept dictionaries based on the relationship between latent activations and input item sequences.
arXiv Detail & Related papers (2024-11-09T08:22:31Z) - Large Language Model Confidence Estimation via Black-Box Access [30.490207799344333]
We propose a simple framework where, we engineer novel features and train a (interpretable) model to estimate the confidence.
We empirically demonstrate that our framework is effective in estimating confidence of Flan-ul2,-13b and Mistral-7b on four benchmark Q&A tasks.
Our interpretable approach provides insight into features that are predictive of confidence, leading to the interesting and useful discovery.
arXiv Detail & Related papers (2024-06-01T02:08:44Z) - Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
We present RoboBEV, an extensive benchmark suite designed to evaluate the resilience of BEV algorithms.
We assess 33 state-of-the-art BEV-based perception models spanning tasks like detection, map segmentation, depth estimation, and occupancy prediction.
Our experimental results also underline the efficacy of strategies like pre-training and depth-free BEV transformations in enhancing robustness against out-of-distribution data.
arXiv Detail & Related papers (2024-05-27T17:59:39Z) - Feature Map Convergence Evaluation for Functional Module [14.53278086364748]
We propose an evaluation method based on feature map analysis to gauge the convergence of model.
We develop Feature Map Convergence Evaluation Network (FMCE-Net) to measure and predict the convergence degree of models.
This is the first independent evaluation method for functional modules, offering a new paradigm for the training assessment towards perception models.
arXiv Detail & Related papers (2024-05-07T06:25:49Z) - JAB: Joint Adversarial Prompting and Belief Augmentation [81.39548637776365]
We introduce a joint framework in which we probe and improve the robustness of a black-box target model via adversarial prompting and belief augmentation.
This framework utilizes an automated red teaming approach to probe the target model, along with a belief augmenter to generate instructions for the target model to improve its robustness to those adversarial probes.
arXiv Detail & Related papers (2023-11-16T00:35:54Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
In this paper, we propose a novel reliable federated disentangling network, termed RFedDis.
To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling.
Our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.
arXiv Detail & Related papers (2023-01-30T11:46:34Z) - Improving the Reliability for Confidence Estimation [16.952133489480776]
Confidence estimation is a task that aims to evaluate the trustworthiness of the model's prediction output during deployment.
Previous works have outlined two important qualities that a reliable confidence estimation model should possess.
We propose a meta-learning framework that can simultaneously improve upon both qualities in a confidence estimation model.
arXiv Detail & Related papers (2022-10-13T06:34:23Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
We propose a novel multi-view classification algorithm, termed trusted multi-view classification (TMC)
TMC provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
Both theoretical and experimental results validate the effectiveness of the proposed model in accuracy, robustness and trustworthiness.
arXiv Detail & Related papers (2022-04-25T03:48:49Z) - AcME -- Accelerated Model-agnostic Explanations: Fast Whitening of the
Machine-Learning Black Box [1.7534486934148554]
interpretability approaches should provide actionable insights without making the users wait.
We propose Accelerated Model-agnostic Explanations (AcME), an interpretability approach that quickly provides feature importance scores both at the global and the local level.
AcME computes feature ranking, but it also provides a what-if analysis tool to assess how changes in features values would affect model predictions.
arXiv Detail & Related papers (2021-12-23T15:18:13Z) - Trusted Multi-View Classification [76.73585034192894]
We propose a novel multi-view classification method, termed trusted multi-view classification.
It provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
The proposed algorithm jointly utilizes multiple views to promote both classification reliability and robustness.
arXiv Detail & Related papers (2021-02-03T13:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.