論文の概要: Detecting LGBTQ+ Instances of Cyberbullying
- arxiv url: http://arxiv.org/abs/2409.12263v1
- Date: Wed, 18 Sep 2024 18:49:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 15:38:21.205225
- Title: Detecting LGBTQ+ Instances of Cyberbullying
- Title(参考訳): LGBTQ+のサイバーバブル検出
- Authors: Muhammad Arslan, Manuel Sandoval Madrigal, Mohammed Abuhamad, Deborah L. Hall, Yasin N. Silva,
- Abstract要約: サイバーいじめは、世界中の青少年にとって重大な脅威となる。
LGBTQ+のコミュニティは特に危険にさらされており、研究者はLGBTQ+の特定とオンラインハラスメントの増大との間に強い相関関係があることを発見した。
LGBTQ+のメンバーに起きたサイバーいじめ事件を正確に識別できる機械学習モデルを開発することは重要である。
- 参考スコア(独自算出の注目度): 3.5723815685584013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social media continues to have an impact on the trajectory of humanity. However, its introduction has also weaponized keyboards, allowing the abusive language normally reserved for in-person bullying to jump onto the screen, i.e., cyberbullying. Cyberbullying poses a significant threat to adolescents globally, affecting the mental health and well-being of many. A group that is particularly at risk is the LGBTQ+ community, as researchers have uncovered a strong correlation between identifying as LGBTQ+ and suffering from greater online harassment. Therefore, it is critical to develop machine learning models that can accurately discern cyberbullying incidents as they happen to LGBTQ+ members. The aim of this study is to compare the efficacy of several transformer models in identifying cyberbullying targeting LGBTQ+ individuals. We seek to determine the relative merits and demerits of these existing methods in addressing complex and subtle kinds of cyberbullying by assessing their effectiveness with real social media data.
- Abstract(参考訳): ソーシャルメディアは人類の軌道に影響を与え続けている。
しかし、その導入は、武器化されたキーボードも導入しており、通常、人のいじめが画面に飛び乗ること、すなわち、サイバーいじめをするための乱用言語が確保されている。
サイバーいじめは、世界中の若者にとって重大な脅威となり、多くの精神的な健康と幸福に影響を及ぼす。
特に危険にさらされているグループはLGBTQ+コミュニティであり、研究者はLGBTQ+と同定することと、オンラインハラスメントの増大に苦しむこととの間に強い相関関係があることを発見した。
したがって、LGBTQ+のメンバーに起きたサイバーいじめ事件を正確に識別できる機械学習モデルを開発することが重要である。
本研究の目的は、LGBTQ+個人を対象としたサイバーいじめの同定における、いくつかのトランスフォーマーモデルの有効性を比較することである。
実際のソーシャルメディアデータを用いてそれらの効果を評価することにより、複雑で微妙なサイバーいじめに対処する上で、これらの既存手法の相対的なメリットとデメリットを判定することを模索する。
関連論文リスト
- Securing Social Spaces: Harnessing Deep Learning to Eradicate Cyberbullying [1.8749305679160366]
サイバーいじめは ソーシャルメディアを使う人の心身の健康を害する深刻な問題だ
本稿は、サイバーいじめがいかに深刻か、そしてそれが被曝した個人にどのように影響するかを説明する。
オンライン空間の安全性を高めるために、より優れたサイバーいじめ検出方法を見つけることがいかに重要かを強調している。
論文 参考訳(メタデータ) (2024-04-01T20:41:28Z) - Explain Thyself Bully: Sentiment Aided Cyberbullying Detection with
Explanation [52.3781496277104]
さまざまなソーシャルメディアネットワークやオンラインコミュニケーションアプリの人気により、サイバーいじめが大きな問題になっている。
一般データ保護規則の「説明の権利」のような近年の法律は、解釈可能なモデルの開発に拍車をかけた。
我々は,コード混在言語からの自動サイバーバブル検出のための,mExCBと呼ばれる最初の解釈可能なマルチタスクモデルを開発した。
論文 参考訳(メタデータ) (2024-01-17T07:36:22Z) - Deep Learning Based Cyberbullying Detection in Bangla Language [0.0]
本研究は,ベンガルのサイバーいじめを識別する深層学習戦略を実証する。
2層双方向長短期メモリ(Bi-LSTM)モデルが構築され、サイバーいじめを識別する。
論文 参考訳(メタデータ) (2024-01-07T04:58:59Z) - A Secure Open-Source Intelligence Framework For Cyberbullying
Investigation [0.0]
本稿では,Twitterのデータを用いたオープンソースのインテリジェンスパイプラインを提案する。
リアルタイム監視を備えたOSINTダッシュボードは、法執行機関が迅速に行動し、被害者を保護し、より安全なオンライン環境を構築するための大きな努力をすることができる。
論文 参考訳(メタデータ) (2023-07-27T23:03:57Z) - "I'm fully who I am": Towards Centering Transgender and Non-Binary
Voices to Measure Biases in Open Language Generation [69.25368160338043]
トランスジェンダーとノンバイナリ(TGNB)の個人は、日常生活から差別や排除を不当に経験している。
オープン・ランゲージ・ジェネレーションにおいて,経験豊富なTGNB人物の疎外化を取り巻く社会的現実がいかに貢献し,持続するかを評価する。
我々はTGNB指向のコミュニティからキュレートされたテンプレートベースの実世界のテキストのデータセットであるTANGOを紹介する。
論文 参考訳(メタデータ) (2023-05-17T04:21:45Z) - Cyberbullying in Text Content Detection: An Analytical Review [0.0]
オンラインソーシャルネットワークは、自殺、摂食障害、サイバー犯罪、強制行動、不安、抑うつといった生命を脅かす状況へのユーザーの露出を増大させる。
サイバーいじめの問題を解決するため、既存の文献の多くは、要因を特定し、サイバーいじめに関連するテキスト的要因を理解するためのアプローチの開発に重点を置いている。
本稿では,サイバーバブル検出の理解を深めるために,総合的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-03-18T21:23:06Z) - DISARM: Detecting the Victims Targeted by Harmful Memes [49.12165815990115]
DISARMは、有害なミームを検出するために名前付きエンティティ認識と個人識別を使用するフレームワークである。
DISARMは10の単一モーダル・マルチモーダルシステムより著しく優れていることを示す。
複数の強力なマルチモーダルライバルに対して、有害なターゲット識別の相対誤差率を最大9ポイントまで下げることができる。
論文 参考訳(メタデータ) (2022-05-11T19:14:26Z) - Enhancing the Identification of Cyberbullying through Participant Roles [1.399948157377307]
本稿では,ロールモデリングによるサイバーバブル検出の高度化に向けた新しいアプローチを提案する。
我々は、ASKfmからのデータセットを利用してマルチクラス分類を行い、参加者の役割を検出する。
論文 参考訳(メタデータ) (2020-10-13T19:13:07Z) - Detecting Perceived Emotions in Hurricane Disasters [62.760131661847986]
私たちはHurricaneEmoを紹介します。HurricaneEmoは、Harvey、Irma、Mariaの3つのハリケーンにまたがる15,000の英語ツイートの感情データセットです。
本稿では, きめ細かい感情を包括的に研究し, 粗い感情群を識別するための分類タスクを提案する。
論文 参考訳(メタデータ) (2020-04-29T16:17:49Z) - A Framework for the Computational Linguistic Analysis of Dehumanization [52.735780962665814]
我々は1986年から2015年にかけてニューヨーク・タイムズでLGBTQの人々に関する議論を分析した。
LGBTQの人々の人為的な記述は、時間とともにますます増えています。
大規模に非人間化言語を分析する能力は、メディアバイアスを自動的に検出し、理解するだけでなく、オンラインで乱用する言語にも影響を及ぼす。
論文 参考訳(メタデータ) (2020-03-06T03:02:12Z) - #MeToo on Campus: Studying College Sexual Assault at Scale Using Data
Reported on Social Media [71.74529365205053]
我々は、#トレンドが大学フォロワーのプールに与える影響を分析した。
その結果、これらの#ツイートに埋め込まれたトピックの大部分は、セクシャルハラスメントのストーリーを詳述している。
この傾向といくつかの主要地理的地域に関する公式な報告との間には大きな相関関係がある。
論文 参考訳(メタデータ) (2020-01-16T18:05:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。