論文の概要: ARTAI: An Evaluation Platform to Assess Societal Risk of Recommender Algorithms
- arxiv url: http://arxiv.org/abs/2409.12396v1
- Date: Thu, 19 Sep 2024 01:39:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 15:03:37.832558
- Title: ARTAI: An Evaluation Platform to Assess Societal Risk of Recommender Algorithms
- Title(参考訳): ARTAI:Recommenderアルゴリズムの社会的リスクを評価する評価プラットフォーム
- Authors: Qin Ruan, Jin Xu, Ruihai Dong, Arjumand Younus, Tai Tan Mai, Barry O'Sullivan, Susan Leavy,
- Abstract要約: ARTAIは,推薦アルゴリズムの大規模評価を可能にする評価環境である。
本稿では,コンテンツ配信における有害なパターンを大規模に評価できる評価環境ARTAIを提案する。
- 参考スコア(独自算出の注目度): 6.697530342907843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Societal risk emanating from how recommender algorithms disseminate content online is now well documented. Emergent regulation aims to mitigate this risk through ethical audits and enabling new research on the social impact of algorithms. However, there is currently a need for tools and methods that enable such evaluation. This paper presents ARTAI, an evaluation environment that enables large-scale assessments of recommender algorithms to identify harmful patterns in how content is distributed online and enables the implementation of new regulatory requirements for increased transparency in recommender systems.
- Abstract(参考訳): 推奨アルゴリズムがオンラインコンテンツをいかに拡散するかから生じる社会的リスクは、今や十分に文書化されている。
創発的な規制は、倫理監査を通じてこのリスクを軽減し、アルゴリズムの社会的影響に関する新たな研究を可能にすることを目的としている。
しかし、現在そのような評価を可能にするツールや方法が必要である。
本稿では,レコメンダアルゴリズムを大規模に評価することで,オンライン配信における有害なパターンを識別し,レコメンダシステムにおける透明性向上のための新たな規制要件の実装を可能にするARTAIを提案する。
関連論文リスト
- Meta Clustering of Neural Bandits [45.77505279698894]
ニューラルバンドのクラスタリング(Clustering of Neural Bandits)という新しい問題を,任意の報酬関数に拡張することで研究する。
本稿では,メタラーナーを用いて動的クラスタを高速に表現・適応する,M-CNBという新しいアルゴリズムを提案する。
M-CNBはレコメンデーションとオンラインの分類シナリオの両方で広範な実験を行い、SOTAベースラインを上回ります。
論文 参考訳(メタデータ) (2024-08-10T16:09:51Z) - Evaluating Ensemble Methods for News Recommender Systems [50.90330146667386]
本稿では,Microsoft News データセット (MIND) において,様々な最先端アルゴリズムを組み合わさって優れた結果を得るために,アンサンブル手法をどのように利用できるかを示す。
その結果,NRSアルゴリズムの組み合わせは,基礎学習者が十分に多様であることから,個々のアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-06-23T13:40:50Z) - Bayesian Safe Policy Learning with Chance Constrained Optimization: Application to Military Security Assessment during the Vietnam War [0.0]
ベトナム戦争で採用されたセキュリティアセスメントアルゴリズムを改善できるかどうかを検討する。
この経験的応用は、アルゴリズムによる意思決定においてしばしば発生するいくつかの方法論的課題を提起する。
論文 参考訳(メタデータ) (2023-07-17T20:59:50Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
リスクに敏感な強化学習は、期待される報酬とリスクのバランスをとるポリシーを最適化することを目的としている。
本稿では,線形および一般関数近似の下で,CVaR(Iterated Conditional Value-at-Risk)を目標とする新しいフレームワークを提案する。
本稿では,この反復CVaR RLに対するサンプル効率の高いアルゴリズムを提案し,厳密な理論的解析を行う。
論文 参考訳(メタデータ) (2023-07-06T08:14:54Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [9.262092738841979]
AIベースのシステムは、組織、個人、社会に価値を提供するために、ますます活用されている。
リスクは、提案された規制、訴訟、および一般的な社会的懸念につながった。
本稿では,定量的AIリスクアセスメントの概念について考察する。
論文 参考訳(メタデータ) (2022-09-13T21:47:25Z) - Safe Policy Learning through Extrapolation: Application to Pre-trial
Risk Assessment [0.0]
我々は,政策の期待された効用を部分的に識別する頑健な最適化手法を開発し,その上で最適な政策を見出す。
このアプローチを、アルゴリズムレコメンデーションの助けを借りて人間が決定する、一般的で重要な設定にまで拡張する。
我々は,既存のリスク評価機器の透明性と解釈可能性を維持する新たな分類・勧告ルールを導出する。
論文 参考訳(メタデータ) (2021-09-22T00:52:03Z) - Safe Learning and Optimization Techniques: Towards a Survey of the State
of the Art [3.6954802719347413]
安全な学習と最適化は、できるだけ安全でない入力ポイントの評価を避ける学習と最適化の問題に対処します。
安全強化学習アルゴリズムに関する包括的な調査は2015年に発表されたが、アクティブラーニングと最適化に関する関連研究は考慮されなかった。
本稿では,強化学習,ガウス過程の回帰と分類,進化的アルゴリズム,アクティブラーニングなど,様々な分野のアルゴリズムについて概説する。
論文 参考訳(メタデータ) (2021-01-23T13:58:09Z) - Risk-Constrained Thompson Sampling for CVaR Bandits [82.47796318548306]
CVaR(Conditional Value at Risk)として知られる量的ファイナンスにおける一般的なリスク尺度について考察する。
本稿では,トンプソンサンプリングに基づくCVaR-TSアルゴリズムの性能について検討する。
論文 参考訳(メタデータ) (2020-11-16T15:53:22Z) - Reinforcement Learning as Iterative and Amortised Inference [62.997667081978825]
我々は、この制御を推論フレームワークとして使用し、償却および反復推論に基づく新しい分類スキームを概説する。
この観点から、比較的探索されていないアルゴリズム設計空間の一部を特定できることを示す。
論文 参考訳(メタデータ) (2020-06-13T16:10:03Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。