論文の概要: Safe Learning and Optimization Techniques: Towards a Survey of the State
of the Art
- arxiv url: http://arxiv.org/abs/2101.09505v2
- Date: Thu, 18 Feb 2021 13:38:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-19 10:39:34.739778
- Title: Safe Learning and Optimization Techniques: Towards a Survey of the State
of the Art
- Title(参考訳): 安全学習と最適化技術--技術の現状調査に向けて
- Authors: Youngmin Kim, Richard Allmendinger and Manuel L\'opez-Ib\'a\~nez
- Abstract要約: 安全な学習と最適化は、できるだけ安全でない入力ポイントの評価を避ける学習と最適化の問題に対処します。
安全強化学習アルゴリズムに関する包括的な調査は2015年に発表されたが、アクティブラーニングと最適化に関する関連研究は考慮されなかった。
本稿では,強化学習,ガウス過程の回帰と分類,進化的アルゴリズム,アクティブラーニングなど,様々な分野のアルゴリズムについて概説する。
- 参考スコア(独自算出の注目度): 3.6954802719347413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe learning and optimization deals with learning and optimization problems
that avoid, as much as possible, the evaluation of non-safe input points, which
are solutions, policies, or strategies that cause an irrecoverable loss (e.g.,
breakage of a machine or equipment, or life threat). Although a comprehensive
survey of safe reinforcement learning algorithms was published in 2015, a
number of new algorithms have been proposed thereafter, and related works in
active learning and in optimization were not considered. This paper reviews
those algorithms from a number of domains including reinforcement learning,
Gaussian process regression and classification, evolutionary algorithms, and
active learning. We provide the fundamental concepts on which the reviewed
algorithms are based and a characterization of the individual algorithms. We
conclude by explaining how the algorithms are connected and suggestions for
future research.
- Abstract(参考訳): 安全な学習と最適化は、解決不可能な損失(例えば、機械や機器の破損、生命の脅威)を引き起こすソリューション、ポリシー、戦略である、安全でない入力ポイントの評価を可能な限り避ける学習と最適化の問題を扱う。
安全強化学習アルゴリズムに関する包括的な調査は2015年に発表されたが、その後多くの新しいアルゴリズムが提案され、アクティブラーニングと最適化に関する関連研究は考慮されていない。
本稿では,強化学習,ガウス過程の回帰と分類,進化的アルゴリズム,アクティブラーニングなど,様々な分野のアルゴリズムについて概説する。
本稿では,レビューアルゴリズムの基盤となる基本概念と,個々のアルゴリズムの特性について述べる。
我々は、アルゴリズムがどのように接続されているかを説明し、今後の研究を提案する。
関連論文リスト
- Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
アルゴリズム設計の最近の進歩は、過去のデータと現在のデータから得られた機械学習モデルによる予測の活用方法を示している。
この文脈における以前の研究は、予測器が過去のデータに基づいて事前訓練され、ブラックボックスとして使用されるパラダイムに焦点を当てていた。
本研究では,予測器を解き,アルゴリズムの課題の中で生じる学習問題を統合する。
論文 参考訳(メタデータ) (2024-03-12T08:40:21Z) - Bayesian Safe Policy Learning with Chance Constrained Optimization: Application to Military Security Assessment during the Vietnam War [0.0]
ベトナム戦争で採用されたセキュリティアセスメントアルゴリズムを改善できるかどうかを検討する。
この経験的応用は、アルゴリズムによる意思決定においてしばしば発生するいくつかの方法論的課題を提起する。
論文 参考訳(メタデータ) (2023-07-17T20:59:50Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Branch and Bound in Mixed Integer Linear Programming Problems: A Survey
of Techniques and Trends [7.432176855020725]
一般分岐および有界(B&B)アルゴリズムにおける4つの臨界成分に対する異なるアプローチとアルゴリズムについて検討する。
近年,B&Bアルゴリズムの高速化のために,このアルゴリズムに学習技術が導入されている。
論文 参考訳(メタデータ) (2021-11-05T10:18:21Z) - Performance Analysis of Fractional Learning Algorithms [32.21539962359158]
従来のアルゴリズムよりも格段に優越性が高いかどうかは定かでないが、その性能が広範に分析されることはなかったため神話である。
本稿では,最小平均二乗および最急降下アルゴリズムの分数変分を厳密に解析する。
学習アルゴリズムの性能に関するその起源と結果について論じ,素早い準備の整った治療法を提案する。
論文 参考訳(メタデータ) (2021-10-11T12:06:44Z) - Algorithm Selection on a Meta Level [58.720142291102135]
本稿では,与えられたアルゴリズムセレクタの組み合わせに最適な方法を求めるメタアルゴリズム選択の問題を紹介する。
本稿では,メタアルゴリズム選択のための一般的な方法論フレームワークと,このフレームワークのインスタンス化として具体的な学習手法を提案する。
論文 参考訳(メタデータ) (2021-07-20T11:23:21Z) - Identifying Co-Adaptation of Algorithmic and Implementational
Innovations in Deep Reinforcement Learning: A Taxonomy and Case Study of
Inference-based Algorithms [15.338931971492288]
我々は、アルゴリズムの革新と実装決定を分離するために、一連の推論に基づくアクター批判アルゴリズムに焦点を当てる。
実装の詳細がアルゴリズムの選択に一致すると、パフォーマンスが大幅に低下します。
結果は、どの実装の詳細がアルゴリズムと共適応され、共進化しているかを示す。
論文 参考訳(メタデータ) (2021-03-31T17:55:20Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
政治政策の最適化は強化学習において難しい問題である。
オフポリシーアルゴリズムはメモリ効率が高く、オフポリシーサンプルから学ぶことができる。
論文 参考訳(メタデータ) (2020-09-14T16:22:46Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
生存分析(SA)は、自然に検閲されたデータをサポートし、アルゴリズムランタイムの分散モデルを学習するためにそのようなデータを使用する適切な方法を提供する。
我々は、アルゴリズム選択に対する洗練された決定論的アプローチの基礎として、そのようなモデルを活用し、Run2Surviveを疑う。
標準ベンチマークASlibによる広範な実験では、我々のアプローチは競争力が高く、多くの場合、最先端のASアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2020-07-06T15:20:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。