MambaRecon: MRI Reconstruction with Structured State Space Models
- URL: http://arxiv.org/abs/2409.12401v1
- Date: Thu, 19 Sep 2024 01:50:10 GMT
- Title: MambaRecon: MRI Reconstruction with Structured State Space Models
- Authors: Yilmaz Korkmaz, Vishal M. Patel,
- Abstract summary: The advent of deep learning has catalyzed the development of cutting-edge methods for the expedited reconstruction of MRI scans.
We propose an innovative MRI reconstruction framework that employs structured state space models at its core, aimed at amplifying both long-range contextual sensitivity and reconstruction efficacy.
- Score: 30.506544165999564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modalities as it provides superior resolution of soft tissues, albeit with a notable limitation in scanning speed. The advent of deep learning has catalyzed the development of cutting-edge methods for the expedited reconstruction of MRI scans, utilizing convolutional neural networks and, more recently, vision transformers. Recently proposed structured state space models (e.g., Mamba) have gained some traction due to their efficiency and low computational requirements compared to transformer models. We propose an innovative MRI reconstruction framework that employs structured state space models at its core, aimed at amplifying both long-range contextual sensitivity and reconstruction efficacy. Comprehensive experiments on public brain MRI datasets show that our model sets new benchmarks beating state-of-the-art reconstruction baselines. Code will be available (https://github.com/yilmazkorkmaz1/MambaRecon).
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Self-Supervised MRI Reconstruction with Unrolled Diffusion Models [27.143473617162304]
We propose a novel self-supervised deep reconstruction model, named Self-Supervised Diffusion Reconstruction (SSDiffRecon)
SSDiffRecon expresses a conditional diffusion process that interleaves cross-attention transformers for reverse diffusion steps with data-consistency blocks for physics-driven processing.
Experiments on public brain MR datasets demonstrate the superiority of SSDiffRecon against state-of-the-art supervised, and self-supervised baselines in terms of reconstruction speed and quality.
arXiv Detail & Related papers (2023-06-29T03:31:46Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
A popular approach to accelerated MRI is to undersample the k-space data.
While undersampling speeds up the scan procedure, it generates artifacts in the images, and advanced reconstruction algorithms are needed to produce artifact-free images.
In this work, MRI reconstruction from undersampled data was carried out using an optimized neural network using a novel evolutionary neural architecture search algorithm.
arXiv Detail & Related papers (2022-06-15T03:42:18Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance
Imaging -- Mini Review, Comparison and Perspectives [5.3148259096171175]
One drawback of MRI is its comparatively slow scanning and reconstruction compared to other image modalities.
Deep Neural Networks (DNNs) have been used in sparse MRI reconstruction models to recreate relatively high-quality images.
Generative Adversarial Networks (GAN) based methods are proposed to solve fast MRI with enhanced image perceptual quality.
arXiv Detail & Related papers (2021-05-04T23:59:00Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Fine-grained MRI Reconstruction using Attentive Selection Generative
Adversarial Networks [0.0]
We propose a novel attention-based deep learning framework to provide high-quality MRI reconstruction.
We incorporate large-field contextual feature integration and attention selection in a generative adversarial network (GAN) framework.
arXiv Detail & Related papers (2021-03-13T09:58:32Z) - Multi-Coil MRI Reconstruction Challenge -- Assessing Brain MRI
Reconstruction Models and their Generalizability to Varying Coil
Configurations [40.263770807921524]
Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process.
The Multi-Coil Magnetic Resonance Image (MC-MRI) Reconstruction Challenge provides a benchmark that aims at addressing these issues.
We describe the challenge experimental design, and summarize the results of a set of baseline and state of the art brain MRI reconstruction models.
arXiv Detail & Related papers (2020-11-10T04:11:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.