Deep Probability Segmentation: Are segmentation models probability estimators?
- URL: http://arxiv.org/abs/2409.12535v1
- Date: Thu, 19 Sep 2024 07:52:19 GMT
- Title: Deep Probability Segmentation: Are segmentation models probability estimators?
- Authors: Simone Fassio, Simone Monaco, Daniele Apiletti,
- Abstract summary: We apply Calibrated Probability Estimation to segmentation tasks to evaluate its impact on model calibration.
Results indicate that while CaPE improves calibration, its effect is less pronounced compared to classification tasks.
We also investigated the influence of dataset size and bin optimization on the effectiveness of calibration.
- Score: 0.7646713951724011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has revolutionized various fields by enabling highly accurate predictions and estimates. One important application is probabilistic prediction, where models estimate the probability of events rather than deterministic outcomes. This approach is particularly relevant and, therefore, still unexplored for segmentation tasks where each pixel in an image needs to be classified. Conventional models often overlook the probabilistic nature of labels, but accurate uncertainty estimation is crucial for improving the reliability and applicability of models. In this study, we applied Calibrated Probability Estimation (CaPE) to segmentation tasks to evaluate its impact on model calibration. Our results indicate that while CaPE improves calibration, its effect is less pronounced compared to classification tasks, suggesting that segmentation models can inherently provide better probability estimates. We also investigated the influence of dataset size and bin optimization on the effectiveness of calibration. Our results emphasize the expressive power of segmentation models as probability estimators and incorporate probabilistic reasoning, which is crucial for applications requiring precise uncertainty quantification.
Related papers
- A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
We introduce the first formal probabilistic evaluation framework in Large Language Models (LLMs)
We derive novel metrics with high-probability guarantees concerning the output distribution of a model.
Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment.
arXiv Detail & Related papers (2024-10-04T15:44:23Z) - Probabilistic Scores of Classifiers, Calibration is not Enough [0.32985979395737786]
In binary classification tasks, accurate representation of probabilistic predictions is essential for various real-world applications.
In this study, we highlight approaches that prioritize the alignment between predicted scores and true probability distributions.
Our findings reveal limitations in traditional calibration metrics, which could undermine the reliability of predictive models for critical decision-making.
arXiv Detail & Related papers (2024-08-06T19:53:00Z) - Achieving Well-Informed Decision-Making in Drug Discovery: A Comprehensive Calibration Study using Neural Network-Based Structure-Activity Models [4.619907534483781]
computational models that predict drug-target interactions are valuable tools to accelerate the development of new therapeutic agents.
However, such models can be poorly calibrated, which results in unreliable uncertainty estimates.
We show that combining post hoc calibration method with well-performing uncertainty quantification approaches can boost model accuracy and calibration.
arXiv Detail & Related papers (2024-07-19T10:29:00Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
We study the problem of semantic segmentation calibration.
Model capacity, crop size, multi-scale testing, and prediction correctness have impact on calibration.
We propose a simple, unifying, and effective approach, namely selective scaling.
arXiv Detail & Related papers (2022-12-22T22:05:16Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
We propose a data preprocessing technique that can detect instances ascribing a specific kind of bias that should be removed from the dataset before training.
In particular, we claim that in the problem settings where instances exist with similar feature but different labels caused by variation in protected attributes, an inherent bias gets induced in the dataset.
arXiv Detail & Related papers (2022-10-24T13:04:07Z) - Calibration tests beyond classification [30.616624345970973]
Most supervised machine learning tasks are subject to irreducible prediction errors.
Probabilistic predictive models address this limitation by providing probability distributions that represent a belief over plausible targets.
Calibrated models guarantee that the predictions are neither over- nor under-confident.
arXiv Detail & Related papers (2022-10-21T09:49:57Z) - Calibrated Selective Classification [34.08454890436067]
We develop a new approach to selective classification in which we propose a method for rejecting examples with "uncertain" uncertainties.
We present a framework for learning selectively calibrated models, where a separate selector network is trained to improve the selective calibration error of a given base model.
We demonstrate the empirical effectiveness of our approach on multiple image classification and lung cancer risk assessment tasks.
arXiv Detail & Related papers (2022-08-25T13:31:09Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.