論文の概要: Manifold Sampling for Differentiable Uncertainty in Radiance Fields
- arxiv url: http://arxiv.org/abs/2409.12661v1
- Date: Thu, 19 Sep 2024 11:22:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 13:56:59.091814
- Title: Manifold Sampling for Differentiable Uncertainty in Radiance Fields
- Title(参考訳): 放射場における微分不確かさに対するマニフォールドサンプリング
- Authors: Linjie Lyu, Ayush Tewari, Marc Habermann, Shunsuke Saito, Michael Zollhöfer, Thomas Leimkühler, Christian Theobalt,
- Abstract要約: 本稿では,ガウス放射場を明示的かつきめ細かい不確実性推定で学習するための多元的アプローチを提案する。
次回のベクター・ビュー・プランニング・タスクにおける最先端のパフォーマンスを実演する。
- 参考スコア(独自算出の注目度): 82.17927517146929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radiance fields are powerful and, hence, popular models for representing the appearance of complex scenes. Yet, constructing them based on image observations gives rise to ambiguities and uncertainties. We propose a versatile approach for learning Gaussian radiance fields with explicit and fine-grained uncertainty estimates that impose only little additional cost compared to uncertainty-agnostic training. Our key observation is that uncertainties can be modeled as a low-dimensional manifold in the space of radiance field parameters that is highly amenable to Monte Carlo sampling. Importantly, our uncertainties are differentiable and, thus, allow for gradient-based optimization of subsequent captures that optimally reduce ambiguities. We demonstrate state-of-the-art performance on next-best-view planning tasks, including high-dimensional illumination planning for optimal radiance field relighting quality.
- Abstract(参考訳): 放射場は強力であり、複雑なシーンの出現を表す一般的なモデルである。
しかし、画像観察に基づく構築は曖昧さや不確実性を引き起こす。
そこで本稿では,不確実性学習に比較して,わずかな追加費用しか課さない明示的かつきめ細かな不確実性推定値を用いてガウス放射場を学習するための多元的アプローチを提案する。
我々のキーとなる観察は、不確実性は、モンテカルロサンプリングに非常に適する放射場パラメータの空間における低次元多様体としてモデル化できるということである。
重要なことは、我々の不確実性は微分可能であり、従って、あいまいさを最適に低減する、勾配に基づく後続のキャプチャの最適化を可能にすることである。
最適照度場照度向上のための高次元照明計画を含む,次世代の照度計画課題における最先端性能を実証する。
関連論文リスト
- ProvNeRF: Modeling per Point Provenance in NeRFs as a Stochastic Field [52.09661042881063]
テキストフィールドとしてNeRFのbfprovenance(可視な位置)をモデル化する手法を提案する。
我々は、NeRF最適化におけるポイントごとの精度のモデリングにより、新しいビュー合成と不確実性推定の改善につながる情報により、モデルが強化されることを示す。
論文 参考訳(メタデータ) (2024-01-16T06:19:18Z) - FisherRF: Active View Selection and Uncertainty Quantification for
Radiance Fields using Fisher Information [32.66184501415286]
本研究では、放射場領域におけるアクティブビュー選択と不確実性定量化の問題に対処する。
NeRFは画像のレンダリングと再構成が大幅に進歩しているが、2D画像の可用性の限界は不確かである。
水産情報を活用することにより,地上の真理データを使わずに,レージアンスフィールド内の観測情報を効率的に定量化する。
論文 参考訳(メタデータ) (2023-11-29T18:20:16Z) - Estimating 3D Uncertainty Field: Quantifying Uncertainty for Neural
Radiance Fields [25.300284510832974]
学習された不完全なシーン形状に基づいて3次元不確かさ場を推定する新しい手法を提案する。
各カメラ線に沿って蓄積された透過率を考慮すると、不確実性フィールドは2Dピクセル単位の不確かさを推測する。
我々の実験は、3D未確認領域とそれに関連する2Dレンダリングピクセルの両方において、高い不確実性を明確に説明できる唯一の方法であることを示した。
論文 参考訳(メタデータ) (2023-11-03T09:47:53Z) - SIRe-IR: Inverse Rendering for BRDF Reconstruction with Shadow and
Illumination Removal in High-Illuminance Scenes [51.50157919750782]
本稿では,環境マップ,アルベド,粗さにシーンを分解する暗黙のニューラルレンダリング逆アプローチSIRe-IRを提案する。
間接放射場、通常光、可視光、および直接光を同時に正確にモデル化することにより、影と間接光の両方を除去することができる。
強い照明の存在下でも,影の干渉を伴わずに高品質なアルベドと粗さを回収する。
論文 参考訳(メタデータ) (2023-10-19T10:44:23Z) - FG-NeRF: Flow-GAN based Probabilistic Neural Radiance Field for
Independence-Assumption-Free Uncertainty Estimation [28.899779240902703]
本研究では,Flow-GANに基づく独立推定自由確率的ニューラル放射場を提案する。
本手法は, 対向学習の生成能力と正規化フローの強力な表現性を組み合わせることで, シーンの密度-放射分布を明示的にモデル化する。
提案手法は,より低いレンダリング誤差と,合成データセットと実世界のデータセットの信頼性の高い不確実性を予測し,最先端の性能を示す。
論文 参考訳(メタデータ) (2023-09-28T12:05:08Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - Improving Generalization via Uncertainty Driven Perturbations [107.45752065285821]
トレーニングデータポイントの不確実性による摂動について考察する。
損失駆動摂動とは異なり、不確実性誘導摂動は決定境界を越えてはならない。
線形モデルにおいて,UDPがロバスト性マージン決定を達成することが保証されていることを示す。
論文 参考訳(メタデータ) (2022-02-11T16:22:08Z) - Improving black-box optimization in VAE latent space using decoder
uncertainty [25.15359244726929]
我々は、より堅牢な不確実性推定を提供する重要サンプリングベース推定器を導入する。
ブラックボックスの目的と生成されたサンプルの妥当性のトレードオフが良くなり、時には両者を同時に改善する。
これらの利点は、数値生成、算術式近似、薬物設計のための分子生成におけるいくつかの実験的な設定にまたがって説明される。
論文 参考訳(メタデータ) (2021-06-30T20:46:18Z) - Sparse Needlets for Lighting Estimation with Spherical Transport Loss [89.52531416604774]
NeedleLightは、新しい照明推定モデルであり、必要に応じて照明を表現し、周波数領域と空間領域を共同で照明推定することができる。
大規模な実験により、NeedleLightは、最先端の手法と比較して、複数の評価指標で常に優れた照明推定を実現していることがわかった。
論文 参考訳(メタデータ) (2021-06-24T15:19:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。