論文の概要: FG-NeRF: Flow-GAN based Probabilistic Neural Radiance Field for
Independence-Assumption-Free Uncertainty Estimation
- arxiv url: http://arxiv.org/abs/2309.16364v2
- Date: Wed, 4 Oct 2023 14:51:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 20:37:09.523742
- Title: FG-NeRF: Flow-GAN based Probabilistic Neural Radiance Field for
Independence-Assumption-Free Uncertainty Estimation
- Title(参考訳): FG-NeRF:フローGANに基づく独立推定自由不確実性推定のための確率的ニューラル放射場
- Authors: Songlin Wei, Jiazhao Zhang, Yang Wang, Fanbo Xiang, Hao Su, He Wang
- Abstract要約: 本研究では,Flow-GANに基づく独立推定自由確率的ニューラル放射場を提案する。
本手法は, 対向学習の生成能力と正規化フローの強力な表現性を組み合わせることで, シーンの密度-放射分布を明示的にモデル化する。
提案手法は,より低いレンダリング誤差と,合成データセットと実世界のデータセットの信頼性の高い不確実性を予測し,最先端の性能を示す。
- 参考スコア(独自算出の注目度): 28.899779240902703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural radiance fields with stochasticity have garnered significant interest
by enabling the sampling of plausible radiance fields and quantifying
uncertainty for downstream tasks. Existing works rely on the independence
assumption of points in the radiance field or the pixels in input views to
obtain tractable forms of the probability density function. However, this
assumption inadvertently impacts performance when dealing with intricate
geometry and texture. In this work, we propose an independence-assumption-free
probabilistic neural radiance field based on Flow-GAN. By combining the
generative capability of adversarial learning and the powerful expressivity of
normalizing flow, our method explicitly models the density-radiance
distribution of the whole scene. We represent our probabilistic NeRF as a
mean-shifted probabilistic residual neural model. Our model is trained without
an explicit likelihood function, thereby avoiding the independence assumption.
Specifically, We downsample the training images with different strides and
centers to form fixed-size patches which are used to train the generator with
patch-based adversarial learning. Through extensive experiments, our method
demonstrates state-of-the-art performance by predicting lower rendering errors
and more reliable uncertainty on both synthetic and real-world datasets.
- Abstract(参考訳): 確率性を持つ神経放射野は、妥当な放射野のサンプリングと下流タスクの不確かさの定量化を可能にして大きな関心を集めている。
既存の著作物では、放射場の点や入力ビューの画素の独立な仮定に依拠し、確率密度関数の扱いやすい形式を得る。
しかし、この仮定は複雑な幾何学やテクスチャを扱う際の性能に不注意に影響を及ぼす。
本研究では,Flow-GANに基づく独立推定自由確率型ニューラル放射場を提案する。
逆学習の生成能力と正規化フローの強力な表現性を組み合わせることで,シーン全体の密度・放射分布を明示的にモデル化する。
確率的nerfを平均シフト確率的残留神経モデルとして表現する。
我々のモデルは明確な可能性関数を使わずに訓練され、独立性の仮定は避けられる。
具体的には、異なるストライドとセンターでトレーニングイメージをサンプリングし、パッチベースの逆学習でジェネレータをトレーニングするために使用される固定サイズのパッチを作成します。
提案手法は,より少ないレンダリング誤差と,合成データセットと実世界のデータセットの信頼性の高い不確実性を予測し,最先端の性能を示す。
関連論文リスト
- CF-GO-Net: A Universal Distribution Learner via Characteristic Function Networks with Graph Optimizers [8.816637789605174]
本稿では,分布に直接対応する確率的記述子である特徴関数(CF)を用いる手法を提案する。
確率密度関数 (pdf) とは異なり、特徴関数は常に存在するだけでなく、さらなる自由度を与える。
提案手法では,訓練済みのオートエンコーダなどの事前学習モデルを使用することで,特徴空間で直接学習することができる。
論文 参考訳(メタデータ) (2024-09-19T09:33:12Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
本稿では,p(mathbfx)$以前の拡散生成モデルとブラックボックス制約,あるいは関数$r(mathbfx)$からなるモデルにおいて,データ上の後部サンプルである $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$について検討する。
我々は,データフリー学習目標である相対軌道バランスの正しさを,サンプルから抽出した拡散モデルの訓練のために証明する。
論文 参考訳(メタデータ) (2024-05-31T16:18:46Z) - Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation [11.874729463016227]
付加雑音によって汚染された物理モデルの代理モデルを構築するための条件付き擬似可逆正規化フローを導入する。
トレーニングプロセスは、ノイズと関数に関する事前知識を必要とせずに、入出力ペアからなるデータセットを利用する。
トレーニングされたモデルでは,高い確率領域をトレーニングセットでカバーした条件付き確率密度関数からサンプルを生成することができる。
論文 参考訳(メタデータ) (2024-03-31T00:09:58Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
本研究では,事前訓練した非条件拡散モデルを用いて,予測サンプルをトレーニングデータ多様体に導入する手法を提案する。
我々は,超解像,着色,乱流除去,画像劣化作業におけるアプローチの有効性を実証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2022-12-14T17:26:35Z) - Learning Multivariate CDFs and Copulas using Tensor Factorization [39.24470798045442]
データの多変量分布を学習することは、統計学と機械学習における中核的な課題である。
本研究では,多変量累積分布関数(CDF)を学習し,混合確率変数を扱えるようにすることを目的とする。
混合確率変数の合同CDFの任意のグリッドサンプリング版は、単純ベイズモデルとして普遍表現を許容することを示す。
提案モデルの性能を,回帰,サンプリング,データ計算を含むいくつかの合成および実データおよびアプリケーションで実証する。
論文 参考訳(メタデータ) (2022-10-13T16:18:46Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
正規化フロー(NF)は、複雑な実世界のデータ分布を正確にモデル化することが示されているフレキシブルな明示的な生成モデルである。
摂動分布から標本を与えられた多様体上の最も可能性の高い点を復元する最適化目的を提案する。
最後に、NFsの明示的な性質、すなわち、ログのような勾配とログのような勾配から抽出された表面正規化を利用する3次元点雲に焦点を当てる。
論文 参考訳(メタデータ) (2022-08-18T16:07:59Z) - Conditional-Flow NeRF: Accurate 3D Modelling with Reliable Uncertainty
Quantification [44.598503284186336]
Conditional-Flow NeRF (CF-NeRF) は、不確実な定量化をNeRFベースのアプローチに組み込む新しい確率的フレームワークである。
CF-NeRFは、モデル化されたシーンに関連する不確実性を定量化するために使用される全ての可能な放射場モデリング上の分布を学習する。
論文 参考訳(メタデータ) (2022-03-18T23:26:20Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Stochastic Neural Radiance Fields:Quantifying Uncertainty in Implicit 3D
Representations [19.6329380710514]
不確かさの定量化は機械学習における長年の問題である。
本稿では,このシーンをモデル化するすべての可能なフィールドの確率分布を学習する標準NeRFの一般化であるNeural Radiance Fields (S-NeRF)を提案する。
S-NeRFは、他の領域における不確実性推定のために提案された一般的なアプローチよりも、より信頼性の高い予測と信頼性値を提供することができる。
論文 参考訳(メタデータ) (2021-09-05T16:56:43Z) - Contextual Dropout: An Efficient Sample-Dependent Dropout Module [60.63525456640462]
ドロップアウトは、ディープニューラルネットワークのトレーニングプロセスを正規化するシンプルで効果的なモジュールとして実証されています。
単純でスケーラブルなサンプル依存型ドロップアウトモジュールとして,効率的な構造設計によるコンテキスト型ドロップアウトを提案する。
提案手法は,不確実性推定の精度と品質の両面において,ベースライン法よりも優れていた。
論文 参考訳(メタデータ) (2021-03-06T19:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。