Experimental decoherence mitigation using a weak measurement-based scheme and the duality quantum algorithm
- URL: http://arxiv.org/abs/2409.12752v1
- Date: Thu, 19 Sep 2024 13:15:28 GMT
- Title: Experimental decoherence mitigation using a weak measurement-based scheme and the duality quantum algorithm
- Authors: Gayatri Singh, Akshay Gaikwad, Arvind, Kavita Dorai,
- Abstract summary: We experimentally demonstrate a weak measurement and measurement reversal-based scheme on an NMR quantum processor.
The duality quantum algorithm is used to efficiently implement the required non-unitary quantum operations.
Our experimental results clearly demonstrate the success of the weak measurement-based decoherence mitigation scheme.
- Score: 2.715284063484557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We experimentally demonstrate a weak measurement and measurement reversal-based scheme to ameliorate the effects of decoherence due to amplitude damping, on an NMR quantum processor. The weak measurement and measurement reversal processes require the implementation of non-unitary operations, which are typically infeasible on conventional quantum processors, where only unitary quantum operations are allowed. The duality quantum algorithm is used to efficiently implement the required non-unitary quantum operations corresponding to weak measurement and measurement reversal. We experimentally validate the efficacy of the weak measurement-based decoherence mitigation scheme by showing state protection on a four-qubit system, with one qubit being designated as the 'system qubit', while the remaining three qubits serve as 'ancilla qubits'. Our experimental results clearly demonstrate the success of the weak measurement-based decoherence mitigation scheme in protecting the desired state. Since the measurement process involved has trace less than unity, the scheme can be thought of as a filtration scheme, where a subset of the spins is protected while the rest of the spins can be discarded.
Related papers
- Harnessing quantum back-action for time-series processing [0.0]
We show that incorporating weak measurements into a quantum machine-learning protocol provides advantages in both execution time scaling and overall performance.
This work provides a comprehensive and practical recipe to promote the implementation of weak measurement-based protocols in quantum reservoir computing.
arXiv Detail & Related papers (2024-11-06T15:15:04Z) - Single Qubit State Estimation on NISQ Devices with Limited Resources and
SIC-POVMs [0.0]
We consider the problem of estimating the quantum state of a qubit in a quantum processing unit without conducting direct measurements of it.
We implement and test the circuit using the quantum computer of the Technical Research Centre of Finland as well as an IBM quantum computer.
arXiv Detail & Related papers (2023-08-15T09:27:52Z) - Quantum Computation by Spin Parity Measurements with Encoded Spin Qubits [0.0]
Joint measurements of two-Pauli observables are a powerful tool for the control and protection of quantum information.
This language for measurement based quantum computing is shown to be directly applicable to encoded double quantum dot singlet-triplet spin qubits.
arXiv Detail & Related papers (2023-05-16T18:01:18Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Efficient qubit measurement with a nonreciprocal microwave amplifier [0.0]
We demonstrate the efficient measurement of a superconducting qubit using a nonreciprocal parametric amplifier.
In addition to providing tools for further improving the fidelity of strong projective measurement, this work creates a testbed for the experimental study of ideal weak measurements.
arXiv Detail & Related papers (2020-09-18T14:40:38Z) - Simulating the effect of weak measurements by a phase damping channel
and determining different measures of bipartite correlations in nuclear
magnetic resonance [4.533054121858426]
Quantum discord is a measure based on local projective measurements which captures quantum correlations that may not be fully captured by entanglement.
We experimentally observed two weak variants of quantum discord namely, super quantum discord and weak quantum discord, in two-qubit Werner and Bell-diagonal states.
arXiv Detail & Related papers (2020-04-02T19:32:36Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.