The Central Role of the Loss Function in Reinforcement Learning
- URL: http://arxiv.org/abs/2409.12799v2
- Date: Mon, 4 Nov 2024 13:30:18 GMT
- Title: The Central Role of the Loss Function in Reinforcement Learning
- Authors: Kaiwen Wang, Nathan Kallus, Wen Sun,
- Abstract summary: We demonstrate how different regression loss functions affect the sample efficiency and adaptivity of value-based decision making algorithms.
Across multiple settings, we prove that algorithms using the binary cross-entropy loss achieve first-order bounds scaling with the optimal policy's cost.
We hope that this paper serves as a guide analyzing decision making algorithms with varying loss functions, and can inspire the reader to seek out better loss functions to improve any decision making algorithm.
- Score: 46.72524235085568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper illustrates the central role of loss functions in data-driven decision making, providing a comprehensive survey on their influence in cost-sensitive classification (CSC) and reinforcement learning (RL). We demonstrate how different regression loss functions affect the sample efficiency and adaptivity of value-based decision making algorithms. Across multiple settings, we prove that algorithms using the binary cross-entropy loss achieve first-order bounds scaling with the optimal policy's cost and are much more efficient than the commonly used squared loss. Moreover, we prove that distributional algorithms using the maximum likelihood loss achieve second-order bounds scaling with the policy variance and are even sharper than first-order bounds. This in particular proves the benefits of distributional RL. We hope that this paper serves as a guide analyzing decision making algorithms with varying loss functions, and can inspire the reader to seek out better loss functions to improve any decision making algorithm.
Related papers
- Provably Efficient Learning in Partially Observable Contextual Bandit [4.910658441596583]
We show how causal bounds can be applied to improving classical bandit algorithms.
This research has the potential to enhance the performance of contextual bandit agents in real-world applications.
arXiv Detail & Related papers (2023-08-07T13:24:50Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
We propose variance regularization for offline RL algorithms, using stationary distribution corrections.
We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer.
The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms.
arXiv Detail & Related papers (2022-12-29T18:25:01Z) - Xtreme Margin: A Tunable Loss Function for Binary Classification
Problems [0.0]
We provide an overview of a novel loss function, the Xtreme Margin loss function.
Unlike the binary cross-entropy and the hinge loss functions, this loss function provides researchers and practitioners flexibility with their training process.
arXiv Detail & Related papers (2022-10-31T22:39:32Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Distributionally Robust Offline Reinforcement Learning with Linear
Function Approximation [16.128778192359327]
We learn an RL agent with the historical data obtained from the source environment and optimize it to perform well in the perturbed one.
We prove our algorithm can achieve the suboptimality of $O(sqrtK)$ depending on the linear function dimension $d$.
arXiv Detail & Related papers (2022-09-14T13:17:59Z) - A deep learning method for solving stochastic optimal control problems driven by fully-coupled FBSDEs [1.0703175070560689]
We first transform the problem into a Stackelberg differential game problem (leader-follower problem)
We compute two examples of the investment-consumption problem solved through utility models.
The results of both examples demonstrate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2022-04-12T13:31:19Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.