論文の概要: CoMAL: Collaborative Multi-Agent Large Language Models for Mixed-Autonomy Traffic
- arxiv url: http://arxiv.org/abs/2410.14368v1
- Date: Fri, 18 Oct 2024 10:53:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:32.758969
- Title: CoMAL: Collaborative Multi-Agent Large Language Models for Mixed-Autonomy Traffic
- Title(参考訳): CoMAL:Mixed-Autonomy Trafficのためのコラボレーション型多言語大言語モデル
- Authors: Huaiyuan Yao, Longchao Da, Vishnu Nandam, Justin Turnau, Zhiwei Liu, Linsey Pang, Hua Wei,
- Abstract要約: CoMALは、交通の流れを最適化するために、自動運転車間のコラボレーションによって、混在する自律交通問題に対処するために設計されたフレームワークである。
CoMALは大きな言語モデル上に構築されており、対話的な交通シミュレーション環境で動作する。
- 参考スコア(独自算出の注目度): 11.682456863110767
- License:
- Abstract: The integration of autonomous vehicles into urban traffic has great potential to improve efficiency by reducing congestion and optimizing traffic flow systematically. In this paper, we introduce CoMAL (Collaborative Multi-Agent LLMs), a framework designed to address the mixed-autonomy traffic problem by collaboration among autonomous vehicles to optimize traffic flow. CoMAL is built upon large language models, operating in an interactive traffic simulation environment. It utilizes a Perception Module to observe surrounding agents and a Memory Module to store strategies for each agent. The overall workflow includes a Collaboration Module that encourages autonomous vehicles to discuss the effective strategy and allocate roles, a reasoning engine to determine optimal behaviors based on assigned roles, and an Execution Module that controls vehicle actions using a hybrid approach combining rule-based models. Experimental results demonstrate that CoMAL achieves superior performance on the Flow benchmark. Additionally, we evaluate the impact of different language models and compare our framework with reinforcement learning approaches. It highlights the strong cooperative capability of LLM agents and presents a promising solution to the mixed-autonomy traffic challenge. The code is available at https://github.com/Hyan-Yao/CoMAL.
- Abstract(参考訳): 自動運転車の都市交通への統合は、渋滞を減らし、交通の流れを体系的に最適化することで効率を向上する大きな可能性を秘めている。
本稿では,自律走行車間で協調して交通流を最適化することで,混在する交通問題に対処するフレームワークであるCoMAL(Collaborative Multi-Agent LLMs)を紹介する。
CoMALは大きな言語モデル上に構築されており、対話的な交通シミュレーション環境で動作する。
周囲のエージェントを監視するためにPerception Moduleを使用し、各エージェントの戦略を保存するためにMemory Moduleを使用する。
全体的なワークフローには、自動運転車が効果的な戦略について議論し、役割を割り当てることを奨励するコラボレーションモジュール、割り当てられた役割に基づいて最適な行動を決定する推論エンジン、ルールベースのモデルを組み合わせたハイブリッドアプローチを使用して車両アクションを制御する実行モジュールが含まれる。
実験の結果,CoMALはFlowベンチマークで優れた性能を示した。
さらに、異なる言語モデルの影響を評価し、フレームワークを強化学習アプローチと比較する。
LLMエージェントの強力な協調能力を強調し、混合自律性交通問題に対する有望な解決策を示す。
コードはhttps://github.com/Hyan-Yao/CoMALで入手できる。
関連論文リスト
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - AgentsCoMerge: Large Language Model Empowered Collaborative Decision Making for Ramp Merging [46.69777653051523]
ランプの合流は交通システムのボトルネックの1つであり、交通渋滞、事故、深刻な二酸化炭素排出を引き起こすのが普通である。
我々は,大規模言語モデル(LLM)を活用するための新しい協調的意思決定フレームワーク,AgentsCoMergeを提案する。
論文 参考訳(メタデータ) (2024-08-07T08:34:48Z) - KoMA: Knowledge-driven Multi-agent Framework for Autonomous Driving with Large Language Models [15.951550445568605]
自律エージェントとしての大規模言語モデル(LLM)は、知識駆動的な方法で現実の課題に取り組むための新しい道筋を提供する。
我々は,マルチエージェントインタラクション,マルチステップ計画,共有メモリ,ランキングベースのリフレクションモジュールからなるKoMAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-19T12:13:08Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - LCS-TF: Multi-Agent Deep Reinforcement Learning-Based Intelligent
Lane-Change System for Improving Traffic Flow [16.34175752810212]
既存のインテリジェントレーン変更ソリューションは主に、エゴ車の性能を最適化することに焦点を当てている。
近年、マルチエージェント強化学習(MARL)に基づくアプローチへの関心が高まっている。
本稿では,エゴ車両の局部性能を両立させるために設計したAV用ハイブリッドMARLを用いたインテリジェントレーン交換システムを提案する。
論文 参考訳(メタデータ) (2023-03-16T04:03:17Z) - Scalable Multi-Agent Model-Based Reinforcement Learning [1.95804735329484]
我々は,モデルベース強化学習(MBRL)を用いて協調環境における集中型トレーニングをさらに活用するMAMBAという新しい手法を提案する。
エージェント間のコミュニケーションは、実行期間中に各エージェントのワールドモデルを維持するのに十分であり、一方、仮想ロールアウトはトレーニングに使用でき、環境と対話する必要がなくなる。
論文 参考訳(メタデータ) (2022-05-25T08:35:00Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。