論文の概要: Autonomous Visual Fish Pen Inspections for Estimating the State of Biofouling Buildup Using ROV -- Extended Abstract
- arxiv url: http://arxiv.org/abs/2409.12813v2
- Date: Fri, 20 Sep 2024 09:01:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 13:23:33.512162
- Title: Autonomous Visual Fish Pen Inspections for Estimating the State of Biofouling Buildup Using ROV -- Extended Abstract
- Title(参考訳): ROV-Extended Abstract を用いたバイオファウリングビルド状態推定のための自律的ビジュアルフィッシュペン検査
- Authors: Matej Fabijanić, Nadir Kapetanović, Nikola Mišković,
- Abstract要約: 魚のケージ検査は、小規模でも工業でも、どんな魚農場でも必要なメンテナンス作業である。
定期的な検査を行う訓練されたダイバーを 自律的な海洋車両に置き換えれば 人力のコストを下げる 水中検査を行う人間に関連するリスクを取り除く
本研究の目的は、ROVのための自律制御アルゴリズムの開発から、魚介類の画像の自動分割、バイオファウリング状態の正確な推定に至るまで、これらの検査プロセスを自動化するための完全なソリューションを提案することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The process of fish cage inspections, which is a necessary maintenance task at any fish farm, be it small scale or industrial, is a task that has the potential to be fully automated. Replacing trained divers who perform regular inspections with autonomous marine vehicles would lower the costs of manpower and remove the risks associated with humans performing underwater inspections. Achieving such a level of autonomy implies developing an image processing algorithm that is capable of estimating the state of biofouling buildup. The aim of this work is to propose a complete solution for automating the said inspection process; from developing an autonomous control algorithm for an ROV, to automatically segmenting images of fish cages, and accurately estimating the state of biofouling. The first part is achieved by modifying a commercially available ROV with an acoustic SBL positioning system and developing a closed-loop control system. The second part is realized by implementing a proposed biofouling estimation framework, which relies on AI to perform image segmentation, and by processing images using established computer vision methods to obtain a rough estimate of the distance of the ROV from the fish cage. This also involved developing a labeling tool in order to create a dataset of images for the neural network performing the semantic segmentation to be trained on. The experimental results show the viability of using an ROV fitted with an acoustic transponder for autonomous missions, and demonstrate the biofouling estimation framework's ability to provide accurate assessments, alongside satisfactory distance estimation capabilities. In conclusion, the achieved biofouling estimation accuracy showcases clear potential for use in the aquaculture industry.
- Abstract(参考訳): 魚介類検査のプロセスは、小規模でも工業でも、どの魚養殖所でも必要なメンテナンス作業であり、完全に自動化される可能性のある作業である。
自律的な海洋車両で定期的な検査を行う訓練されたダイバーをリプレースすることで、人力のコストを低減し、水中検査を行う人間に関連するリスクを取り除くことができる。
このような自律性のレベルを達成することは、バイオファウル化ビルドの状態を推定できる画像処理アルゴリズムを開発することを意味する。
本研究の目的は、ROVのための自律制御アルゴリズムの開発から、魚介類の画像の自動分割、バイオファウリング状態の正確な推定に至るまで、これらの検査プロセスを自動化するための完全なソリューションを提案することである。
第1部は、市販のROVを音響SBL位置決めシステムで修正し、閉ループ制御システムを開発する。
第2の部分は、画像セグメンテーションを行うためにAIに依存するバイオファウリング推定フレームワークを実装し、確立されたコンピュータビジョン手法を用いて画像を処理することにより、魚のケージからROVの距離を大まかに推定することで実現される。
これには、トレーニング対象のセマンティックセグメンテーションを実行するニューラルネットワーク用のイメージデータセットを作成するためのラベルツールの開発も含まれていた。
実験結果から, 自律ミッションに音響トランスポンダを装着したROVの有効性を示し, 良好な距離推定能力とともに, バイオファウリング推定フレームワークが正確な評価を行う能力を示した。
その結果, 生物汚濁推定精度は養殖業での利用可能性を示している。
関連論文リスト
- AdaCropFollow: Self-Supervised Online Adaptation for Visual Under-Canopy Navigation [31.214318150001947]
アンダーキャノピー農業ロボットは、精密なモニタリング、スプレー、雑草、植物操作などの様々な応用を可能にする。
本稿では,視覚的基礎モデル,幾何学的事前,擬似ラベリングを用いて意味キーポイント表現を適応するための自己教師付きオンライン適応手法を提案する。
これにより、人間による介入を必要とせずに、畑や作物をまたがるアンダーキャノピーロボットの完全な自律的な行追尾が可能になる。
論文 参考訳(メタデータ) (2024-10-16T09:52:38Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - Evaluating Deep Learning Assisted Automated Aquaculture Net Pens
Inspection Using ROV [0.27309692684728615]
魚は魚の養殖場から海に逃げ出す。
従来の検査システムは、専門家のダイバーやROVによる視覚検査に依存している。
本稿では,養殖網ペンを対象としたロボットによる自動網欠陥検出システムについて述べる。
論文 参考訳(メタデータ) (2023-08-26T09:35:49Z) - Self-Supervised Representation Learning from Temporal Ordering of
Automated Driving Sequences [49.91741677556553]
本研究では、認識タスクのための地域レベルの特徴表現を事前学習するための時間順述前文タスクであるTempOを提案する。
我々は各フレームを、オブジェクト検出やトラッキングシステムにとって自然な表現である、未順序な特徴ベクトルのセットで埋め込む。
BDD100K、nu Images、MOT17データセットの大規模な評価は、私たちのTempO事前学習アプローチがシングルフレームの自己教師型学習方法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-02-17T18:18:27Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Visual-tactile sensing for Real-time liquid Volume Estimation in
Grasping [58.50342759993186]
変形性容器内の液体をリアルタイムに推定するためのビジュオ触覚モデルを提案する。
我々は、RGBカメラからの生の視覚入力と、特定の触覚センサーからの触覚手がかりの2つの感覚モードを融合する。
ロボットシステムは、推定モデルに基づいて、リアルタイムで適切に制御され、調整される。
論文 参考訳(メタデータ) (2022-02-23T13:38:31Z) - Deep Semantic Segmentation at the Edge for Autonomous Navigation in
Vineyard Rows [0.0]
精密農業は、農業プロセスに安価で効果的な自動化を導入することを目的としている。
提案する制御は,機械認識技術とエッジAI技術の最新技術を活用して,ブドウ畑の列内における高精度で信頼性の高いナビゲーションを実現する。
制御アルゴリズム自体によって生成されたセグメンテーションマップは、作物の状態の植物性評価のためのフィルタとして直接利用することができる。
論文 参考訳(メタデータ) (2021-07-01T18:51:58Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
本研究では,無人航空機(UAV)に低高度レーダーを装備し,未知の環境下での飛行における共同検出・マッピング・ナビゲーション問題について検討する。
目的は、マッピング精度を最大化する目的で軌道を最適化することであり、目標検出の観点からは、測定が不十分な領域を避けることである。
論文 参考訳(メタデータ) (2020-05-05T20:39:18Z) - Machine learning approaches for identifying prey handling activity in
otariid pinnipeds [12.814241588031685]
本稿では,アザラシの捕食行動の同定に焦点をあてる。
考慮すべきデータは、アザラシに直接取り付けられたデバイスによって収集された3D加速度計と深度センサーのストリームである。
機械学習(ML)アルゴリズムに基づく自動モデルを提案する。
論文 参考訳(メタデータ) (2020-02-10T15:30:08Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。