論文の概要: AdaCropFollow: Self-Supervised Online Adaptation for Visual Under-Canopy Navigation
- arxiv url: http://arxiv.org/abs/2410.12411v1
- Date: Wed, 16 Oct 2024 09:52:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:41:14.419602
- Title: AdaCropFollow: Self-Supervised Online Adaptation for Visual Under-Canopy Navigation
- Title(参考訳): AdaCropFollow:ビジュアルアンダーキャノピーナビゲーションのための自己監督型オンライン適応
- Authors: Arun N. Sivakumar, Federico Magistri, Mateus V. Gasparino, Jens Behley, Cyrill Stachniss, Girish Chowdhary,
- Abstract要約: アンダーキャノピー農業ロボットは、精密なモニタリング、スプレー、雑草、植物操作などの様々な応用を可能にする。
本稿では,視覚的基礎モデル,幾何学的事前,擬似ラベリングを用いて意味キーポイント表現を適応するための自己教師付きオンライン適応手法を提案する。
これにより、人間による介入を必要とせずに、畑や作物をまたがるアンダーキャノピーロボットの完全な自律的な行追尾が可能になる。
- 参考スコア(独自算出の注目度): 31.214318150001947
- License:
- Abstract: Under-canopy agricultural robots can enable various applications like precise monitoring, spraying, weeding, and plant manipulation tasks throughout the growing season. Autonomous navigation under the canopy is challenging due to the degradation in accuracy of RTK-GPS and the large variability in the visual appearance of the scene over time. In prior work, we developed a supervised learning-based perception system with semantic keypoint representation and deployed this in various field conditions. A large number of failures of this system can be attributed to the inability of the perception model to adapt to the domain shift encountered during deployment. In this paper, we propose a self-supervised online adaptation method for adapting the semantic keypoint representation using a visual foundational model, geometric prior, and pseudo labeling. Our preliminary experiments show that with minimal data and fine-tuning of parameters, the keypoint prediction model trained with labels on the source domain can be adapted in a self-supervised manner to various challenging target domains onboard the robot computer using our method. This can enable fully autonomous row-following capability in under-canopy robots across fields and crops without requiring human intervention.
- Abstract(参考訳): アンダーキャノピー農業ロボットは、成長期を通じて正確なモニタリング、スプレー、雑草、植物操作といった様々な応用を可能にする。
RTK-GPSの精度の低下と、時間とともにシーンの視覚的外観に大きな変動があるため、天蓋下の自律ナビゲーションは困難である。
先行研究において,意味キーポイント表現を用いた教師あり学習に基づく認識システムを開発し,様々な分野に展開した。
このシステムの多数の障害は、デプロイメント中に遭遇したドメインシフトに適応できないという認識モデルの欠如に起因する可能性がある。
本稿では,視覚的基礎モデル,幾何学的先行モデル,擬似ラベリングを用いた意味的キーポイント表現を適応するための自己教師付きオンライン適応手法を提案する。
予備実験では、最小限のデータとパラメータの微調整により、ソースドメイン上のラベルで訓練されたキーポイント予測モデルを、ロボットコンピュータ上の様々な挑戦対象ドメインに自己教師付きで適用できることを示した。
これにより、人間による介入を必要とせずに、畑や作物をまたがるアンダーキャノピーロボットの完全な自律的な行追尾が可能になる。
関連論文リスト
- SKT: Integrating State-Aware Keypoint Trajectories with Vision-Language Models for Robotic Garment Manipulation [82.61572106180705]
本稿では、視覚言語モデル(VLM)を用いて、様々な衣服カテゴリーにおけるキーポイント予測を改善する統一的なアプローチを提案する。
我々は、高度なシミュレーション技術を用いて大規模な合成データセットを作成し、大規模な実世界のデータを必要としないスケーラブルなトレーニングを可能にした。
実験結果から, VLM法はキーポイント検出精度とタスク成功率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-09-26T17:26:16Z) - Towards Full-scene Domain Generalization in Multi-agent Collaborative
Bird's Eye View Segmentation for Connected and Autonomous Driving [54.60458503590669]
協調認識の学習段階と推論段階の両方に適用可能な統合ドメイン一般化フレームワークを提案する。
我々は、AmpAug(Amplitude Augmentation)法を用いて、低周波画像の変動を増大させ、学習能力を拡大する。
推論フェーズでは、システム内ドメインアライメント機構を導入し、ドメインの不一致を減らし、潜在的に排除する。
論文 参考訳(メタデータ) (2023-11-28T12:52:49Z) - Context-Conditional Navigation with a Learning-Based Terrain- and Robot-Aware Dynamics Model [11.800678688260081]
我々は,TRADYNと呼ばれる新しい確率的,地形的,ロボット対応のフォワードダイナミクスモデルを開発した。
本研究では,一輪式ロボットと空間的に異なる摩擦係数を持つ異なる地形配置を備えた2次元ナビゲーション環境において,本手法の評価を行った。
論文 参考訳(メタデータ) (2023-07-18T12:42:59Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
我々は,ロボット探索を導くための視覚能力の学習手法を開発した。
VQ-VAEの潜伏埋め込み空間における条件分布の学習にはTransformerベースのモデルを用いる。
本稿では,ロボット操作における視覚的目標条件付きポリシー学習において,目標サンプリング分布として機能することで探索を導くために,トレーニングされた余裕モデルをどのように利用できるかを示す。
論文 参考訳(メタデータ) (2023-05-28T17:53:09Z) - Policy Pre-training for End-to-end Autonomous Driving via
Self-supervised Geometric Modeling [96.31941517446859]
PPGeo (Policy Pre-training via Geometric Modeling) は,視覚運動運転における政策事前学習のための,直感的かつ直接的な完全自己教師型フレームワークである。
本研究では,大規模な未ラベル・未校正動画の3次元幾何学シーンをモデル化することにより,ポリシー表現を強力な抽象化として学習することを目的とする。
第1段階では、幾何モデリングフレームワークは、2つの連続したフレームを入力として、ポーズと深さの予測を同時に生成する。
第2段階では、視覚エンコーダは、将来のエゴモーションを予測し、現在の視覚観察のみに基づいて測光誤差を最適化することにより、運転方針表現を学習する。
論文 参考訳(メタデータ) (2023-01-03T08:52:49Z) - Uncertainty-aware Perception Models for Off-road Autonomous Unmanned
Ground Vehicles [6.2574402913714575]
オフロード自律無人地上車両(UGV)は、遠隔地で重要な物資を供給するために軍用および商業用途のために開発されている。
現在のデータセットは、季節、場所、セマンティッククラス、および日時における多様性の欠如に対する、オフロード自律ナビゲーションのための知覚モデルのトレーニングに使用されています。
本研究では,複数のデータセットを組み合わせてセグメンテーションに基づく環境認識モデルを学習する方法について検討する。
我々は,不確実性を捉えるためにモデルをトレーニングすることで,モデルの性能を著しく向上させることができることを示した。
論文 参考訳(メタデータ) (2022-09-22T15:59:33Z) - Waypoint Generation in Row-based Crops with Deep Learning and
Contrastive Clustering [1.2599533416395767]
行ベースの作物の航法経路を計画するための経路点生成のための学習に基づくアプローチを提案する。
本稿では,各点を分離可能な潜在空間に投影できる,コントラスト損失に基づく新たなウェイポイントクラスタリング手法を提案する。
提案したディープニューラルネットワークは、単一のフォワードパスで2つの特別なヘッドによるウェイポイント位置とクラスタ割り当てを同時に予測することができる。
論文 参考訳(メタデータ) (2022-06-23T11:21:04Z) - Self-Improving Semantic Perception on a Construction Robot [6.823936426747797]
本稿では,ロボット上でセマンティクスモデルが継続的に更新され,展開環境に適応するフレームワークを提案する。
そこで本システムは,マルチセンサ知覚と局所化を密結合し,自己教師付き擬似ラベルから継続的に学習する。
論文 参考訳(メタデータ) (2021-05-04T16:06:12Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - Online Domain Adaptation for Occupancy Mapping [28.081328051535618]
本研究では,環境変化を考慮したモデルパラメータ適応のための最適輸送理論に基づく理論的枠組みを提案する。
高忠実性駆動シミュレータと実世界のデータセットを用いることで、2次元および3次元占有マップのパラメータが局所的な空間変化に合わせて自動的に適応できることを示す。
論文 参考訳(メタデータ) (2020-07-01T00:46:51Z) - Understanding Self-Training for Gradual Domain Adaptation [107.37869221297687]
段階的なドメイン適応は、対象領域へ徐々にシフトするラベルのないデータのみを与えられたソースドメインで訓練された初期分類器を適応させることが目的である。
目標領域への直接適応が非有界誤差をもたらすような設定下において、段階的なシフトを伴う自己学習の誤差に対する最初の非無空上界を証明した。
この理論解析はアルゴリズムの洞察を導き、無限のデータを持つ場合でも正規化とラベルのシャープ化が不可欠であることを強調し、より小さなワッサーシュタイン無限距離のシフトに対して自己学習が特にうまく働くことを示唆している。
論文 参考訳(メタデータ) (2020-02-26T08:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。